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1.0 ABSTRACT 
Within the context of teleoperating the JSC 
Robonaut humanoid robot under 2-10 second 
time delays, this paper explores the technical 
problem of modeling and classifying human 
motions represented as six-dimensional (position 
and orientation) trajectories.  A dual path 
research agenda is reviewed which explored both 
deterministic approaches and stochastic 
approaches using Hidden Markov Models.  
Finally, recent results are shown from a new 
model which represents the fusion of these two 
research paths.  Questions are also raised about 
the possibility of automatically generating 
autonomous actions by reusing the same 
predictive models of human behavior to be the 
source of autonomous control.  This approach 
changes the role of teleoperation from being a 
stand-in for autonomy into the first data 
collection step for developing generative models 
capable of autonomous control of the robot. 
 
2.0 INTRODUCTION 
The motivating problem for this research has 
been how to best control the JSC (NASA 
Johnson Space Center) Robonaut platform given 
a 2-10 second time delay.  Robonaut is a 
humanoid robot designed to have dexterous 
manipulation capabilities similar to those of a 
suited astronaut, enabling it to perform many of 
the construction and repair functions that would 
currently require an EVA by a human astronaut 
[8].   Besides reducing the number of dangerous 
EVA’s that must be performed, Robonaut would 
also be able to perform emergency repairs.  
Currently it takes an astronaut 4-5 hours to suit 
up for an EVA. If there is a critical emergency 
which must be repaired quickly this delay may 
doom the astronauts.  Thus, if the Robonaut were 
able to deploy immediately it might be able to 
handle the emergency repair before a human 
could even start the EVA.  So, the next question 
is, how should this robot be controlled?  
Currently, fully autonomous control for such a 

high degree of freedom robot that is verifiably 
robust and safe is a long term research project 
and is unlikely to be flown soon.  Thus, 
Robonaut will be controlled through some form 
of teleoperation.  While success has been shown 
in the lab with fully immersive teleoperation, 
difficulties emerge when a time delay is 
introduced.  The 2-10 second time delays that 
this project is concerned with can occur if there 
is a human controller on the ground and the 
Robonaut is in LEO (up to 2 second delay) or out 
at the moon (8-10 second communications 
delay).  While these distances are not so great, it 
is the nature of the communications networks 
and topology which introduce such large time 
delays.  When a multi-second time delay is 
introduced, direct teleoperation slows down 
tremendously since, for safety reasons, the 
operator is forced to adapt a “bump and wait” 
strategy.   This entails making a small movement 
(the “bump”) and then waiting to get feedback 
on the results of that motion.  Controlling the 
robot with a “bump and wait” teleoperation 
strategy is slow and tedious, and does not 
optimize the speed advantage of deploying the 
robot for a critical emergency repair. 
 
Thus, in order to deal with the time delay a 
sliding scale of autonomy is proposed.  This is a 
hybrid control scheme that keeps a human in the 
loop (and ultimately in control for safety 
reasons), yet allows for and greatly increases 
operation speeds.  This is done by allowing 
small, well understood and conditioned tasks 
(which are often the routine tasks) to be 
performed autonomously.  The granularity of 
these autonomous tasks can vary from none (full 
teleoperator control), to simple motions such as 
positioning the hand close to (but still a safe 
distance away from) an object of interest, to 
compound tasks such as reaching towards a 
known object, and then grabbing and retrieving 
it. 
 



Once capabilities for these autonomous tasks 
exist, one must ask how they will be 
commanded.      As will be shown below, the 
operator currently controls the Robonaut by 
operating directly in a richly expressed virtual 
environment.  The goal of this work is to be able 
to recognize and predict when the operator is 
engaging in one of the pre-defined autonomous 
tasks so that the action can be triggered on the 
robot.  The control of these autonomous actions 
is purposefully kept in physical context (as 
opposed to developing some command 
grammar) to facilitate the seamless transition 
between direct tele-operation control and the 
varying levels of autonomous actions. 
 
Currently the autonomous actions are hand 
coded.  One of the basic questions that this group 
is researching is to see if  the process of creating 
autonomous actions can be automated by 
modeling human behavior.  If we can accurately 
understand and model the methods humans use 
to solve certain problems, then it is possible that 
those very same models can be used to control a 
humanoid robot like Robonaut to accomplish 
similar tasks.  Thus, we view teleoperation not 
simply as a means to accomplish a task in the 
absence of robust autonomy, but rather as the 
first step in building models of human action for 
the purpose of developing robust autonomous 
control [9]. 
    
The current method of controlling Robonaut 
involves the operator wearing two data gloves 
that are used to measure finger joint positions, 
and two magnetic trackers used to measure the x-
y-z position and roll-pitch-yaw orientation of 
each hand (end effector). The position and 
orientation information is then transmitted to the 
robot as end effector position commands. The 
number of degrees of freedom in the elbow and 
shoulder are constrained to enable this position 
while maximizing strength. For safety 
considerations, the rate of movement of the arms 
is limited; thus the operators are trained to match 
or move slower than this rate. Most of the 
feedback to the operator comes from the stereo 
cameras mounted in the head of Robonaut and 
transmitted back to the teleoperator’s head 
mounted display. Thus an operator will reach for 
an object so that his view from the head mounted 
cameras is not obscured by the hand. This can 
result in some simple tasks taking a very long 
time to accomplish. For example, in grasping a 
hand rail (as a rung of a ladder) the operator 
must make sure that the fingers can wrap around 
the handle using the stereo visual cues. This 

action typically takes several seconds for an 
experienced operator.  
 

 

 
 
Fig. 1. Actual Simulation based experiment. The 
operator view from the left and right cameras of 
the simulated hand rails.  
 
2.1 EXPERIMENTS  
We chose two basic tasks, retrieving a hand rail 
mounted vertically and dropping it into a box, 
and retrieving a hand rail mounted horizontally 
and dropping it into a box. The hand rails are 
mounted with Velcro on a board, affixed to a 
stationary wall. The target box is a flexible cloth 
box that is open but is not within the same field 
of view as the hand rails. These tasks were 
chosen as a first step towards automating 
climbing on a space habitat.  
The tasks consist of the following steps:  
1. Start in initial position/state  
2. Look down at hand (substitute for proprio-
receptive feedback) and then at hand rails  
3. Reach for specified hand rail (either vertical or 
horizontal according to plan)  
4. Grasp hand rail  
5. Remove hand rail from wall (pull)  
6. Move hand rail over box  
7. Drop hand rail into box  
8. Return to initial position  



 
The Robonaut can be operated via a simulated 
environment, so that the operators can perform 
tasks without regard for the time-delay normally 
associated with long distance operations.  The 
motion commands generated in the simulated 
environment are then sent to the actual robot for 
execution. For this experiment, inexperienced 
operators tended to have greatly varying 
behaviors, whereas the variance in the data was 
negligible for the most experienced teleoperator.  
Fig. 1 shows the simulated environment in which 
the experiments discussed in this paper were 
conducted. These experiments were conducted 
on many different days over six months.  Initial 
conditions varied noticeably from day to day.  
 
 
2.2 TECHNICAL PROBLEM 
While there are a number of other technical and 
design challenges to the larger problem we are 
solving, the core problem is the modeling and 
classification of six dimensional trajectories. 
 
Each trial can be cut into a sequence of trajectory 
segments.  In this work we focus on the first 
segment, which goes from the start position to 
one of the possible graspable objects.  These 
trajectories are a time-stamped sequence of the 
X, Y, Z, location of the operator’s hand and the 
associated rotation matrix, which we cast into 
roll, pitch, yaw representation.  Thus, the 
trajectories are a time sequence of six-
dimensional data points.  It is important to note 
that the data is generated at a variable rate and 
will often include multiple repetitions of the 
same data point.  Another property of these 
trajectories that is important to be aware of is the 
messy initial conditions.  Since the operator 
starts in approximately the same location for 
every motion, the initial segments of all the 
trajectories are heavily overlapped, making it 
difficult to clearly separate them in the early part 
of the motion (Fig. 2).  Furthermore, this is 
compounded by a large day-to-day variance on 
the operator’s start position. (Within a single 
day’s trials the trajectories tend to cluster fairly 
nicely).  This non-stationarity means that there is 
a wide variance on the motion and location of the 
trajectories, and that in some cases the initial 
motions towards different objects end up looking 
very similar (Fig. 3). 
 
Our task is: given a set of example six-
dimensional trajectories to certain known points 
in space, develop meaningful models of the 
different trajectories, and then use those models 
to classify a new trajectory in real time, as soon 

as possible (i.e. while having seen only some 
initial segment of the trajectory), and with no 
false alarms (i.e. it is better to not classify than to 
give the wrong classification). 
 

Figure 2 - This is a plot of the XYZ position 
information of many trajectories to two 
different handles.  The start location on the 
right shows how the initial conditions for the 
different trajectories are heavily overlapped. 

Figure 3 - This is the same data as figure 2, 
but viewed at a different angle to highlight the 
spatial variance of the start positions. 
 
Notice that the solution to this problem, which 
was motivated by teleoperation and user intent 
prediction, can be used in other ways.  
Specifically, it really is about classifying and 
predicting human gestures.  Thus, if a robot were 
working side by side with a human, and 
assuming there was a good solution for visually 
capturing the motion of the human’s hand or 



arm, this trajectory classification method could 
be used to comprehend the intent behind the 
human’s motions, such as which object the 
human was reaching for.  And, as mentioned 
earlier, we hope that the same models could be 
reused to generate autonomous control. 
 
3.0 DEVELOPOMENT APPROACH 
To ensure that there was no ideological bias 
towards algorithms developed by the group 
during earlier research, we explored in parallel 
different approaches to solving this problem.  
One track continued with previous work by 
applying stochastic methods, such as using 
Hidden Markov Models to classify the 
trajectories.  The other track looked at more 
deterministic methods and ended up exploring 
different spatial representations of the data.  This 
research approach has been very successful, with 
the two different tracks starting to converge and 
borrow techniques from each other.  Hopefully 
this research approach of starting from multiple 
points of the solution space is more likely to lead 
to a globally optimal solution to the problem.  In 
contrast, research programs which start out 
ideologically tied to certain classes of algorithms 
will, at best, find only a locally optimal solution.  
Due to academic specialization, this last case is, 
unfortunately, reasonably common. 
 
In the following section we will try to present the 
evolution of our thoughts on these two different 
tracks, and show how they have influenced each 
other. 
 
3.1 DETERMINISTIC APPROACH 
The initial approach to this problem was simply 
to calculate the distance between the operator’s 
hand and the possible target objects.  It was 
quickly found that a simple distance threshold 
was not sufficient, as one might pass reasonably 
near one object while reaching for the other one.  
Next, the first derivative of motion was 
examined to see which object the operator was 
“moving towards the most”.  The major lesson 
from this approach was realization of how 
important orientation was.   We found examples 
in which the operator was positioning the hand to 
be in the correct orientation to grab one handrail, 
and the motion to do this did not involve moving 
towards that handrail, and even sometimes 
looked like it was moving directly towards some 
other object.  Yet, these false alarms are evident 
when orientations of the hand and objects are 
considered because the back of the hand was 
moving towards the “false” object.  This means 
that while the motion vector looked good, the 

relative orientation between the hand and the 
object was such that a grasp was very unlikely.   
 
After further work, it turned out that merely 
looking at the instantaneous   motion vector and 
the relative orientation was insufficient because 
the operator does not follow a minimum-distance 
path in either position or orientation space.  The 
operators have been trained to move in such a 
way as to avoid singularities, self contact and 
other hazards for the robot.  Also, since control 
is purely visual (they use no force-feedback 
information), they always move so as to maintain 
visual contact with both the object and the hand.  
This leads, for example, to a preference for 
underhand grasps so that the operator can see 
when the object is properly grasped.  An 
overhand grasp would occlude the object being 
manipulated.   All these constraints result in 
motion paths that are not necessarily the shortest 
distance or most direct motion towards the goal. 
 
It was at this point that we really started to look 
at the data as a six-dimensional trajectory 
through position and orientation space.  By doing 
this we capture the overall shape of the motion, 
not just the instantaneous motion.  We also 
needed to recast the data into a time independent 
manner since the raw data was very dependant 
upon the speed at which an operator moved.  To 
do this we decided to normalize along the length 
of the trajectory itself.  In other words, we recast 
the data into a new set of data points which were 
a known distance apart along the piecewise 
linear direction of travel.  The overall shape of 
the plotted trajectory stayed the same, but the 
actual data points which were used to represent it 
are now equidistant on the trajectory itself.  
Using this new representation an “average” 
trajectory was computed for each graspable 
object.  A method of comparing two trajectories 
was developed by calculating the average 
distance error and then novel trajectories were 
compared to these canonical averages.  The 
weakness of this is that the high degree of 
variance and overlap, especially in the early part 
of the trajectories, caused many false alarms (i.e. 
matching to the wrong trajectory).  In order to 
capture this variance a memory based approach 
was experimented with where all the trajectories 
in the training set were kept in memory and the 
novel trajectory was compared to all of them to 
find the best match.  Under certain conditions 
this was found to work fairly well, but was 
fragile to the inclusion of outlier examples in the 
training set.  There is certainly a large body of 
literature that studies these sorts of memory 
systems and how to condition and clean the 



training data.  But at this point it was decided 
that  such a path did not lead towards our goal of 
creating reversible models of human behavior 
which could be used to generate autonomous 
control.  Thus, we turned again to statistical 
approaches to create flexible models of these 
clusters of trajectories.  We'll look at the 
stochastic methods next and then discuss the new 
converged algorithms in section 3.3. 
 
3.2 STOCHASTIC APPROACH 
The research group has a strong body of 
experience in applying Bayesian techniques to 
gesture recognition problems [10].   The 
Bayesian approach  has is roots solidly grounded 
in formal probabilistic graphical modeling. 
Using the junction tree algorithm, DBN’s 
(dynamic bayes nets) can easily meet the needs 
of any number of inferential or parameter 
learning problems. In this case, the parameters 
we would like to learn are those of a Gaussian 
mixture model, or multi-modal Gaussian 
distribution which would describe a cluster of 
example trajectories. We believe that human 
motion is Markovian in nature, and can be 
broken down into discrete chunks. In turn, we 
hypothesize that each of these chunks can be 
characterized probabilistically by the 
aforementioned Gaussian mixture model. This is 
very similar to what is done in voice/speech 
recognition, where words are broken down into 
phonemes. The use of the Hidden Markov Model 
(HMM) encapsulates all of these ideas (DBN’s, 
Markov chains, Gaussian mixture emissions), 
and is ubiquitous in the voice/speech recognition 
community. However, these techniques have also 
been applied by other researchers interested in 
the field of motion classification and detection 
for video sequences. This field is related closely 
to our problem of motion trajectory 
classification, and they use similar intuitive 
arguments for applying formal probabilistic 
methods [3,4,5,6,7]. 
 
Much of the Bayesian approach applied to the 
current problem of modeling and classifying 6D 
trajectories for tele-operation under a time delay 
has been documented in previous work [1,2]. 
The common theme has been the use of the 
HMM as the fundamental modeling paradigm. A 
typical example of a tied-mixture HMM of the 
sort used in this work is shown in Fig. 4, in the 
context of a formal graphical model. 
 

 
 
  Figure 4 
 
A tied-mixture model is used in order to allow us 
to represent the output observations as mixtures 
of Gaussians but yet still allows the model to 
scale in a reasonable fashion, providing us with 
sufficient free parametric flexibility. The shaded 
nodes shown in Figure 4 indicate that they are 
observed, while the unshaded nodes are 
“hidden,” and need to be inferred from our 
observations. Some of the other important 
quantities from Fig. 4 can be described as 
follows: qt - the state value at time t, wt - the 
mixture value at time t, yt - the observation 
vector at time t having dimension n, 
corresponding to the number of elements in the 
feature vector. The HMM parameters which are 
learned by Baum-Welch iteration (an 
optimization/training algorithm) are grouped 
together as θ, and are defined as follows: 
 

 
Some other important probabilities with regards 
to the tied mixture HMM shown in Fig. 4 are as 
follows: 

 



Feature selection has proven to be a very 
important factor in how well the models 
characterize the experimental motion trajectory-
based data. Additionally, it has played an 
important role in how consistently the models 
and real-time recall thresholds can be optimized 
to achieve the goals of no false alarms, minimum 
missed detections and time to prediction. Feature 
selection refers to the choice of several different 
combinations of feature vectors that can be used 
(i.e. what comprises yt - the observation vector at 
time t having dimension n). These feature 
vectors act as templates for the observation 
sequences used to train and recall the hidden 
Markov models. “Recall” is a term that often 
refers to the use of the Viterbi algorithm, but can 
also be used to describe any algorithm that is 
used during the model testing phase, after the 
models have already been trained. During real-
time recall of the models, HMMs trained on all 
tasks of interest (reaching for a particular object) 
are arbitrated based upon an algorithm to 
determine the “winning model,” or which model 
best describes the streaming data. 
 
Example feature vectors include subsets of the 
pose vector, which provides point of resolution 
(POR) data, a 4x4 homogeneous transform 
matrix representing the commanded position and 
orientation of the back of the robot’s hand 
decomposed into position (x-y-z) and orientation 
(roll-pitch-yaw). Euclidean distances to the 
objects of interest being reached for can be used 
to form the feature vector as well. In addition to 
feature selection, the tradeoffs, advantages, and 
disadvantages of applying different recall 
methods were studied in detail, including their 
optimizations. Concerning the feature vectors, 
initially we considered looking only at Y and 
Yaw, which were discovered to provide good 
discrimination between the different types of 
trajectories to distinct objects. However, there 
were some problems with inconsistent initial 
conditions across multiple tele-operation 
sessions and multiple operators that biased the 
final error statistics. Optimization has not even 
completely resolved this problem, which may in 
part be due to the small size of the validation 
sets. 
 
We’d also like to determine whether we can 
maximum the robustness of our final error 
statistics (% false alarms and missed detections) 
to minor variations in the experimental setup. In 
doing so, we’ve found that processing and 
testing new datasets based upon HMM 
prediction models trained on previous sessions 
are not sufficiently robust to changes in the 

experimental setup to yield reasonable error 
statistics. As a result, this gives us incentive to 
converge to a hybrid solution between the 
Bayesian approach and the deterministic 
approach that incorporates the best features of 
both. The first step in this process is to study and 
test a new approach that takes advantage of the 
spatial characterization of the trajectories rather 
than their time dependence. As such, we become 
much more reliant on distance to the objects of 
interest as not only an element within the feature 
vector, but as a method for discretizing the 
trajectory space, as one would discretize pixels 
in a video sequence. 
 
3.3 CONVERGED METHOD 

It is at this point that the convergence of the two 
research tracks began in earnest.  The new 
method, which we call the approach manifold 
method, takes an object-centric view of an 
approaching hand.  While the hand and object 
position information was encoded in a robot 
centric frame of reference before, the approach 
manifold method casts the hand position into  an 
object centered frame composed of three values 
of position (XYZ) and 4 values of orientation 
represented by quaternions. Next., instead of 
explicitly comparing trajectories, this approach     
statistically models the distribution of 
approaching hand trajectories.  It does this by 
discritizing the world by distance from the 
object.  At a given distance, a mixture of 
Gaussians is found which represents the 
distributions of trajectories at that distance in the 
object centric frame.  Intuitively, what this 
creates is a “fuzzy” multi-dimensional manifold 
shaped somewhat like a funnel.  This is 
somewhat difficult to visualize, but in figures 5 
and 6 we show a histogram based distribution on 
two of the axis, Roll and X, for the horizontal 
handrail target.  

 
Figure 5: Distribution of Roll values versus 
distance.  
 



 Without being able to rotate the figure around, it 
is somewhat tricky to see, but in the Roll 
distribution there is actually a multi-modal 
distribution at greater distance, which collapses 
to a single clean distribution as the hand gets 
closer to the object.  The X distribution is 
interesting because is stays tightly focused over 
all distances, which is not surprising because X 
is the major contributor to the distance metric. 

 
Figure 6: X versus distance 
 
When a novel trajectory is encountered, it is 
compared against the manifolds associated with 
all valid objects, and the object with the best 
score is considered the goal of the motion.   
Having described the algorithm, it is important to 
note that this is under active development and 
that, for example, we are still using a simple 
histogram approach instead of the mixture of 
Gaussians described above.  Despite this 
simplification, this approach is producing good 
results that are fairly robust to minor changes in 
handrail position.   
 
4.0 RESULTS 
As noted above, we have not yet fully 
implemented the Approach Manifold Method, 
and already we are getting some good results.  
Since this is still under development, we have 
not yet done a fully rigorous variational test, but 
we will show the results we do have.  Not only  
are the results good on their own terms (100% 
correct predictions), they also compare favorably 
against previous results using the optimized 
HMM’s. 
 
Table 1 shows the results of a number of 
different tests against different datasets.  In all 
these results, the models were trained on other 
data sets, and then shown either the 6/16 or the 
10/7 data set.  The Avg. Time Delta metric is the 
number of seconds from when the classification 
was made until the handrail was grabbed.  Thus, 
the larger the value the better the algorithm did.  

For example, if the Delta were zero that would 
mean the classification was made only after the 
operator had made the entire gesture and was 
grabbing the handrail.  This metric is good for 
comparing tests against the same data set, but 
because the operator might move quicker on 
some days (as they seem to be doing for 10/7) it 
is not a reliable measure across data sets.  The 
tests shown in Table 1 are as follows: 
HMM 6/16: The Optimized Hidden Markov 
Models described in the Stochastic section, and 
in earlier papers, is tested against the 6/16 data 
set. 
AMM-Bin: The Approach Manifold Method, 
using binning to approximate a distribution. 
AMM-Gaus: The Approach Manifold Method, 
using a Gaussian representation of trajectory 
distribution.  It should be noted that this method 
was just completed and may improve over the 
next few days. 
 

Table 1:  Results Metrics 

 
HMM 
6/16 

AMM-
Bin 
6/16 

AMM-
Gaus 
6/16 

AMM-
Gaus 
10/7 

Total 
Trials 28 28 28 20
Classified 
Correct 26 28 28 20
Failed to 
Classify 2 0 0 0
Classified 
Wrong  0 0 0 0
Avg. 
Time 
Delta 6.9 7.9 7.2 5

 
As can be seen from this chart, the new 
Approach Manifold Method does a better job of 
classifying the trials, and does so quicker than 
the previous HMM method.  What the chart 
doesn’t show is even more impressive.   The 
10/7 data is special because the handrail 
orientations are reversed: the vertical and 
horizontal handrails have swapped position.   
The models were trained on earlier data, and then 
shown the 10/7 data and they were still able to 
correctly classify all the trials.  Since one of the 
goals of the Approach Manifold Method was to 
let the models be more independent of position 
and orientation, these early results show that we 
are working in the right direction. 
 
5.0 FUTURE WORK & DISCUSSION 
One feature that all these approaches share is that 
a single model is not general for any arbitrary 



location of the object.  This makes sense since a 
trajectory is fundamentally the path from some 
known point in space, to some known point in 
space.  That being said, it is clear that the 
different models being produced are valid for 
some amount of deviation from the points they 
were trained on.  The approach manifold method 
explicitly attempts to get away from this 
limitation and encode the approach manifold of a 
hand towards the object from any arbitrary 
location.  Yet even in this case there are 
limitations to how general a single model can be 
because unusual approaches, while valid, may 
also look like outlier data and will be given low 
score.  Thus, for all these approaches it can be 
said that, at some granularity, there is a region 
for which a specific model is valid.  Thus, in 
order to have a complete solution which could 
recognize grasp attempts anywhere in the 
workspace of the robot, one would need very 
many models to account for all the possible 
positions of objects.  This is a reasonable 
approach, though it comes at the expense of 
requiring large amounts of example data.  One 
thing we would like to look at in the future is 
how to automatically generate appropriate 
models for any arbitrary object location. 
 
A common first thought is, why not create a path 
planner which can generate paths to any arbitrary 
location.  The problem with this approach is that 
it is not clear that a path planner will generate a 
trajectory that looks like what a human would 
decide to do.  The goal here is not optimal path 
generation, but rather the goal is interpreting 
human gesture.  Thus, what we would like to do 
is to develop enough models of human motion 
that we can start automatically generating motion 
models that mimic human gestures. 
 
Of course, this leads us back to one of our 
original questions: Is it possible to automatically 
generate autonomous behavior by modeling 
human action?  Ideally this could be done 
directly from the teleoperation example data and 
would never require the creation of an explicit 
path planner.  An important, and unanswered, 
question is: given two different models which 
both predict the human action equally well, will 
one of these models be better at generating 
autonomous control?   What are the properties of 
a good generative model?  And, finally, how can 
you verify that a model is robust enough that its 
autonomous control will be safe and reliable?  
This is a long term research agenda, which, if 
successful, could have a huge impact on 
lowering the barrier to the creation of 
autonomous control. 

 
We would like to close by thanking the members 
of the Dexterous Robotics Laboratory at Johnson 
Space Center for their hard work and ongoing 
support of this research.  Without them, we 
would have no data. 
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