
Model-Predictive Control of a Flexible Spine Robot

Andrew P. Sabelhaus*1†, Student Member, IEEE, Abishek K. Akella2, Zeerek A. Ahmad3, Vytas SunSpiral4†

Abstract— The Underactuated Lightweight Tensegrity

Robotic Assistive Spine (ULTRA Spine) project is an ongoing

effort to develop a flexible, actuated backbone for quadruped

robots. In this work, model-predictive control is used to track

a trajectory in the robot’s state space, in simulation. This is the

first work that tracks an arbitrary trajectory, in closed-loop,

in the state space of a spine-like tensegrity robot. The state

trajectory used here corresponds to a bending motion of the

spine, with translations and rotations of the three moving

vertebrae. The controller uses a linearized model of the system

dynamics, computed at each timestep, and has both constraints

and weighted penalties to reduce linearization errors. For this

robot, which measures 26cm x 26cm x 45cm, the tracking

errors converge to less than 0.5cm even with disturbances,

indicating that the controller is stable and could be used on a

physical robot in future work.

I. INTRODUCTION
Quadruped (four-legged) robots are usually constructed

with rigidity between their hips and shoulders, even when
they are designed to solve difficult locomotion problems such
as walking over uneven terrain [1], [2], [3], [4]. Quadrupeds
with flexible bodies, particularly with actuation in a spine-
like structure, often have single-degree-of-freedom mecha-
nisms [5], [6], [7]. Actuated spines with many degrees-of-
freedom could help with locomotion challenges, but few have
been designed or implemented, partially due to the control
challenges for such a structure. Even current actuated spines
have only been controlled with kinematics-only models [8],
[9], model-free control using central-pattern generators [6],
[7], [10], or the replaying of open-loop inputs [11].

The Underactuated Lightweight Tensegrity Robotic As-
sistive Spine (ULTRA Spine) is a project to design and
control a multi-degree-of-freedom flexible robotic spine for
a quadruped robot [12]. This work presents closed-loop
tracking controller for the ULTRA Spine. Fig. 1 shows the
spine during a bending motion.

A. Tensegrity Robots and Control
The ULTRA Spine is a tensegrity, or ”tension-integrity”,

structure. Tensegrity structures consist of rigid bodies sus-
pended in a network of cables in tension such that no two
bodies contact each other [13], and are inherently flexible.

* corresponding author.
†Authors with the NASA Ames Intelligent Robotics Group and the

Dynamic Tensegrity Robotics Lab, Moffett Field CA 94035, USA
1A.P. Sabelhaus is with the Department of Mechanical Engineering, Uni-

versity of California Berkeley, USA apsabelhaus@berkeley.edu

2A.K. Akella is with Levant Power Corp., 475 Wildwood Ave, Woburn
MA 01801, USA akakella@berkeley.edu

3Z.A. Ahmad is with Velo3D Inc., 1001 Belford Dr., San Jose, CA 95132,
USA zeerekahmad@gmail.com

4V. SunSpiral is with SGT Inc., Greenbelt, MD 20770, USA, work-
ing at NASA Ames Research Center, Moffett Field CA 94035, USA
vytas.sunspiral@nasa.gov

Fig. 1: Trajectory-tracking control for the flexible backbone
robot (ULTRA Spine), mid-simulation, for a uniaxial bending
trajectory. The rigid bodies (vertebrae) of the spine are in
gray, cables in red, and the target trajectory for the top spine
vertebra is in blue. This work uses a point-mass dynamics
model, so the rigid vertebra bodies are for visualization only.

Many types of robots have been designed around a tensegrity
system, which change their shape by adjusting the lengths
of their cables so that they can roll [14], [15], [16], crawl
[17], [18], [19], swim [20], [21], and climb [22], [23]. In
particular, different models of tensegrity spines have been
investigated [24], [25], [19], but the ULTRA Spine is one
of the first uses of a tensegrity spine on a quadruped robot
[12], [10].

Control of tensegrity robots has been limited to either
analytical solutions for simple topologies [26], model-free
techniques [17], [25], [19], or open-loop control [27], [28],
[29], [22]. To the authors’ knowledge, this is the first work
to track trajectories in a tensegrity spine in the robot’s state
space, and one of the first to do so for any tensegrity robot.

B. Why Model-Predictive Control?
Prior unpublished attempts at controlling the ULTRA

Spine with linear controllers (such as LQR) have not been
stable. As in this work, only position states have been
available as a reference trajectory, without velocity states
and without a corresponding input trajectory. Combined with

the hybrid system dynamics of the spine (due to cable
slackness), these controller formulations have had significant
linearization errors, and have exhibited large instabilities.

Model-Predictive Control (MPC) is a control technique
that incorporates state and input constraints on a system [30].
MPC has been used for many constrained robotics control
problems [31], [32], [33], [34]. This work uses the constraints
in an MPC controller enforce small linearization errors and
reduce cable slackness and stabilize the robot.

All software associated with this work is available under
an open-source license online1.

II. ULTRA SPINE SYSTEM DYNAMICS

This ULTRA Spine state-space model uses a set of rigid-
body states for each vertebra (12 states per rigid body, 3 ver-
tebrae, 36 states.). However, as in much of the literature [15],
[35], [23], a point mass approximation is used for tractability.
Each vertebra is modeled as five point masses (Fig. 2).
The dynamics derivation below contains the translations and
rotations that map the rigid body states onto point-mass
positions. The dynamics are formulated using Lagrange’s
equations, then implemented and solved symbolically in
MATLAB. Since an analytical dynamics model is needed for
Model-Predictive Control (sect. IV), prior work in the field
including kinematics models [22], [35], [23] and numerical
methods [36], [15], [19] could not be used.

This controller uses a discrete-time dynamics model, but
the dynamics derivation occurs in continuous time. The
discretization is discussed alongside the linearization in sect.
IV. We assume full knowledge of the system states at each
timestep. The continuous-time system model is of the form

˙

⇠ = g(⇠, u) ⇠ 2 R36

y = ⇠ u 2 R24 (1)

where ⇠ is the state vector. As shown in Fig. 1, there are
24 cables in this model, each treated as an input: 12 vertical
cables extending vertically along the spine’s edges, and 12
“saddle” cables holding the vertebrae apart. Note that since
the spine vertebrae should never be rotated by more than
even 90 degrees, the Euler angles in the rigid body states do
not need to be explicitly constrained to lie between [0, 2⇡].

A. Topology

The topology of this spine is defined by the connections
between its cables and its rigid bodies (vertebrae.) Each
vertebra consists of 5 points masses: one at its center, and
one at each end of its four “legs.” Each leg extends outward
at a 30� angle relative to the horizontal axis, and is 15cm
long. This puts the end of each leg at 7.5cm above or below
the center node. Fig. 2 shows one vertebra, with its six
rigid body states: Cartesian positions (X,Y, Z) and rotations
(✓, �,�). The five point masses are 0.142kg each, for a total
mass of 0.71kg per vertebra. These dimensions and masses
correspond to an early hardware prototype of the robot [12].

1https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-
simulations/tree/acc2017

Fig. 2: A single spine vertebra with its local coordinate
system. The point mass locations a1...a5 are labeled in red.

For a single vertebra, the locations of each of the four
point masses at the end of a spine, with respect to the center
of the vertebra, are, in centimeters,

⇥
a1 a2 a3 a4 a5

⇤
=

2

4
0 13 �13 0 0

0 0 0 13 �13

0 �7.5 �7.5 7.5 7.5

3

5

This notation uses a1 as the location of the center of
the vertebra, corresponding to the (X,Y, Z) states of each
vertebra in the state vector.

The positions of each of the four point masses as the
ends of the “legs” of a vertebra are calculated using rotation
matrices corresponding to the three Euler angles of that
vertebra, then offset by the position of the center node. For
vertebra j, the Cartesian positions of the center node and
Euler angles are picked out of the state vector:

2

6666664

x

j

y

j

z

j

✓

j

�

j

�

j

3

7777775
=

2

6666664

⇠(j�1)⇥12+1

⇠(j�1)⇥12+2

⇠(j�1)⇥12+3

⇠(j�1)⇥12+4

⇠(j�1)⇥12+5

⇠(j�1)⇥12+6

3

7777775
, j = 1...3

Then, denoting R

✓

, R

�

, R

�

as the 3D rotation matrices for
each Euler angle, and with ê

x

, ê
y

and ê
z

, as the unit vectors
in each Cartesian direction, the final position of each point
mass for vertebra j is then

2

66664

q1j

q2j

q3j

q4j

q5j

3

77775
=

2

66664

x

j

ê
x

+ y

j

ê
y

+ z

j

ê
z

R

�

(�

j

)R

�

(�

j

)R

✓

(✓

j

)a2 + x

j

ê
x

+ y

j

ê
y

+ z

j

ê
z

R

�

(�

j

)R

�

(�

j

)R

✓

(✓

j

)a3 + x

j

ê
x

+ y

j

ê
y

+ z

j

ê
z

R

�

(�

j

)R

�

(�

j

)R

✓

(✓

j

)a4 + x

j

ê
x

+ y

j

ê
y

+ z

j

ê
z

R

�

(�

j

)R

�

(�

j

)R

✓

(✓

j

)a5 + x

j

ê
x

+ y

j

ê
y

+ z

j

ê
z

3

77775

Thus, the positions of all 15 point masses have been
defined in terms of the 18 position/angle states in the state
vector. The other 18 states (their derivatives) are not used.

B. Dynamics Model
The distances between cable-connected nodes are stored

as vectors l

i

for i = 1...24 cables, each as a function of the
system states ⇠. The cables are modeled as spring-damper
systems, where the (scalar) tension force on cable i is:

F

i

= k(||l
i

||� p

i

)� c

˙||l
i

|| i = 1...24 (2)

where k = 2000

N

m

is the spring constant, c = 100

Ns

m

is the
damping constant, ||l

i

|| is the scalar length of the cable, and
p

i

is the rest length of cable i. This model assumes that the
rest lengths of the cables are the inputs to the system, and
that they can be controlled directly:

u = [p1 p2 ... p24]

>
u 2 R24

The forces F

i

must be constrained to be strictly non-
negative; i.e., the cables cannot ”push.” The following adap-
tation of the dynamics equations allows for this constraint.
When solving the equations below, the cable tensions are
kept as a separate symbolic variable. Calculating g(⇠, u) be-
comes a three-step process: the cable tensions are calculated
first given the equations above, then those tension values are
rectified if they are negative:

F

i

= (F

i

> 0)⇥ F

i

(3)

where the parenthetical expression evaluates to a boolean 1

or 0 in MATLAB. Third, these values are plugged in for F
i

below in the solved dynamics.
Finally, Lagrange’s equations are used to calculate the

system dynamics in continuous time. For all j = 1...3

vertebra with k = 1...5 point masses at m = 0.142kg each,
and where q(z)kj is the Cartesian coordinate in the z-direction
for point mass q

kj

, and where ⇠
d

is the d-th element of the
state vector,

T =

1

2

3X

j=1

5X

k=1

mkq̇
kj

k22 (4)

V =

3X

j=1

5X

k=1

mgq(z)kj (5)

L = T � V (6)

d

dt

@L

@

˙

⇠

d

� @L

@⇠

d

=

24X

i=1

@F

i

@⇠

d

, d = {1..6, 13..18, 25..30} (7)

Here, (7) contains 18 equations: one for each of the
position and angle states, for each of the three vertebrae.
Note that the forces from eqn. (2-3) are not included in eqn.
(5), they are instead in the right-hand side of eqn. (7).

The right-hand side and left-hand side of equation 7 are
then solved symbolically, then equated, and the derivatives
of each state were solved for (since each q

kj

is expressed in
terms of ⇠.) This was performed using a combination of the
MATLAB commands solve, simplify, and parfeval

for multi-threading. The resulting equations for g(⇠, u) are
very long, so are not provided here, but are available online2.

2https://github.com/BerkeleyExpertSystemTechnologiesLab/ultra-spine-
simulations/tree/master/dynamics/3d-dynamics-symbolicsolver

Fig. 3: Bending trajectory for the top vertebra of the spine
in the X-Z plane, exaggerated for visibility. The vertebrae
rotate counterclockwise around the origin at a constant radius
r

j

, swept out by angle �
j

. Solid blue line shows the position
of the center of the vertebra. The middle two vertebrae rotate
in similar manners. The lowest vertebra is fixed, and is not
part of the dynamics.

III. CONTROL OBJECTIVES

In this work, the ULTRA Spine robot is controlled in a
bending motion. This trajectory was motivated by prior work
[12], where forward kinematics for this spine were used to
determine the vertebra positions when one set of its vertical
cables were retracted. The trajectory had n = 80 timesteps.

No a-priori dynamic trajectories were available for this
model: no method existed for creating a dynamic trajectory
from a kinematic one. Consequently, the controller in sect.
IV does not include tracking of control inputs or velocities.

A. Kinematic Trajectory

The spine starts in an upright position, then rotates coun-
terclockwise around the -Y axis by an angle �

j

for vertebra
j, staying in the 2-dimensional X-Z plane (Fig. 3). This
”bending” trajectory includes translations in X and Z as
well as rotations in � for each vertebra.

As per sect. II-A, the spine vertebrae are separated by
10cm vertically in their starting position:

[z1(0) z2(0) z3(0)] = [0.1 0.2 0.3]

These initial heights are the radius of the rotation: r
j

=

z

j

(0). Consequently, the reference positions of each vertebra
over time, xref

j

and z

ref

j

, are:

x

ref

j

= r

j

sin(�

j

), z

ref

j

= r

j

cos(�

j

)

The rotations of each vertebra around its inertial frame, in
�, were the same as the sweep angle for that vertebra. This
kept the vertebrae parallel to the radius of rotation:

�

ref

j

= �

j

(8)

Each vertebra had a different maximum sweep angle, to
be consistent with the kinematics simulations in prior work
[12]. These angles were:

[�1max

, �2max

, �3max

] =

"
⇡

16

,

⇡

12

,

⇡

8

#

The range from 0 to �
j(max) was divided linearly between

each of the n = 80 timesteps. All other reference trajectory
states in ⇠ref were zero.

IV. CONTROLLER FORMULATION
A model-predictive controller was used to track the above

trajectory ⇠

ref

. At each timestep t of the controller, the
following constrained finite-time optimal control problem
(CFTOC) was solved, generating the sequence of control
inputs U

t!t+N |t = {u
t|t, ..., ut+N |t}, with a window of

N = 10. The notation t + k|t represents a value at the
timestep t + k, as given or predicted at timestep t ([37],
Ch. 4.) Then, the first input u

t|t is applied to the system,
and the simulation advances to timestep t+1, and the prob-
lem repeats. Note that no terminal costs or constraints are
included here, and thus stability can only be experimentally
concluded, not proven.

min

Ut!t+N|t

NX

k=0

J(⇠

t+k|t, ut+k|t, ⇠
ref

t+k

) (9)

subj. to:
⇠

t+k+1 = A

t

⇠

t+k

+B

t

u

t+k

+ c

t

(10)
u

min

 u

t+k

 u

max

(11)
ku

t

� u(t�1)k1 w1 (12)
ku

t+k

� u

t

k1 w2, k = 1..(N � 1) (13)
ku

t+N

� u

t

k1 w3 (14)
k⇠(1 : 6)

t+k

� ⇠(1 : 6)

t+k�1k1 w4 (15)
k⇠(13 : 18)

t+k

� ⇠(13 : 18)

t+k�1k1 w5 (16)
k⇠(25 : 30)

t+k

� ⇠(25 : 30)

t+k�1k1 w6 (17)
⇠(3)

t+k

+ w7 ⇠(15)

t+k

(18)
⇠(15)

t+k

+ w7 ⇠(27)

t+k

(19)

Here, N = 10 is the horizon length (a scalar), w1...w7

are constant scalar weights, and ⇠(i)

t+k

denotes the i-th
element of the state vector at time t+ k as predicted at time
t. The dynamics constraint, (10), consists of the linearized
and discretized system at time t, calculated as

A

t

=

@g(⇠, u)

@⇠

���
⇠=⇠t

u=ut�1

B

t

=

@g(⇠, u)

@u

���
⇠=⇠t

u=ut�1

c

t

= g(⇠

t

, u(t�1))�A

t

⇠

t

�B

t

u(t�1)

The discretization occurs as A

t

, B
t

, and c

t

are calculated,
via a simple finite-difference Euler discretization, with k =

0.001, the same as the timestep for t. At each timestep of
the simulation, these matrices are calculated by numerically
differentiating the equations of motion from eqn. (7) in

MATLAB: the dynamics are forward simulated in each
direction, and a finite-difference approximation is taken.
This approach was chosen due to computational issues with
calculating additional analytical derivatives of the dynamics.

This linearization was calculated at each timestep t and
used for the optimization over the entire horizon, thus the
notation A

t

, B

t

, c

t

. Since no trajectory of inputs was avail-
able, linearizations used the prior state’s input u

t�1 instead.
For the start of the simulation, u0 = 0 was used. Note that
since these linearizations are not at equilibrium points, the
linear system is affine, with c

t

being a constant vector offset.
The remaining constraints used have the following inter-

pretations. Constraint (11) is a bound on the inputs, limiting
the length of the cable rest lengths, with u

min

, u

max

2 R24

but having the same value for all inputs (Table I). This is
the constraint that helps prevent the system from operating
in the slack-cable regime, thus keeping it in one set of
continous dynamics instead of behaving as a hybrid system.
Constraints (12), (13), and (14) are smoothing terms on
the inputs, which help with the lack of an input reference
trajectory. Here u(t�1) is the most recent input at the start
of the CFTOC problem. Constraints (15), (16), and (17) are
smoothing terms on the states, limiting the deviation between
successive states in the trajectory. These are needed to reduce
linearization error, and are split so that the positions and
angles of each vertebra could be weighted differently. Note
from (15-17) that no velocity terms are constrained. Finally,
noting that states ⇠(3), ⇠(15), and ⇠(27) are the z-positions
of each vertebra as per sect. II-A, constraints (18) and (19)
prevent the collision between adjacent vertebrae.

The cost function J , written with arbitrary time index j,

J(⇠

j

, u

j

, ⇠

ref

j

) =

(⇠

j

� ⇠

ref

j

)

>
Q

j

(⇠

j

� ⇠

ref

j

) +

(⇠

j

� ⇠(j�1))
>
S

j

(⇠

j

� ⇠(j�1)) +

w8k(uj

� u(j�1))k1

(20)

As before, w8 is a scalar, while Q and S are constant
diagonal weighting matrices. Here, Q penalizes the tracking
error in the states, S penalizes the deviation in the states at
one timestep to the next, and w8 penalizes the deviations in
the inputs from one timestep to the next. These matrices
are diagonal, with blocks corresponding to the Cartesian
and Euler angle dimensions, with zeros for all velocity
states, according to vertebra. Nonzeros are at states ⇠1...⇠6,
⇠13...⇠18, and ⇠25...⇠30, recalling that ⇠ 2 R36. Raising each
diagonal element to the power j puts a heavier penality on
terms farther away on the horizon. These are defined as:

Q

j

= diag(w9, w9, w9 | w10, w10, w10 | 0...0) 2 R12⇥12

S

j

= diag(w11, w11, w11 | w11, w11, w11 |0...0) 2 R12⇥12

Q = diag(Q1, Q2, Q3), S = diag(S1, S2, S3)

Table I lists all the constants for this controller, including
the constraints and the objective function, with units.

TABLE I: Controller weights and constants.

Constant: Value: Interpretation:
u
min

0.0 meters (cable) Min. Cable Length
u
max

0.20 meters (cable) Max. Cable Length
w1 0.01 meters (cable) Input Smooth., Horiz. Start
w2 0.01 meters (cable) Input Smooth., Horiz. Middle
w3 0.10 meters (cable) Input Smooth., Horiz. End
w4 0.02 meters, radians State Smooth., Bottom Vert.
w5 0.03 meters, radians State Smooth., Mid. Vert.
w6 0.04 meters, radians State Smooth., Top Vertebra
w7 0.02 meters (vert. pos.) Vertebra Collision
w8 1 no units Input Smoothing
w9 25 no units State Tracking, Vertebra Pos.
w10 30 no units State Tracking, Vert. Angle
w11 3 no units Input Difference Penalty

V. SIMULATION SETUP

Two simulations are presented in this work, one for the
controller without disturbances and one for the controller
with disturbances. All simulation work used the YALMIP
toolbox in MATLAB [38], with Gurobi as the solver [39].

The timestep used for the trajectory was �k = 0.001

seconds, which was also the dt for the dynamics simulation.
The dynamics were forward-simulated using the Runge-
Kutta method.

A. Disturbances
For the simulation with disturbances, a weighted random

variable was added to each state in the simulation after
each timestep. This was a constant multiplied by a sample
from N (0, 1), with w12N (0, 1) for the position and angle
states and w13N (0, 1) for the velocities. For positions, w12

was 0.5mm and 0.0005rad, and for the velocities, w13 was
0.2

cm

sec

and 0.0002

rad

sec

.
Note that the disturbances on the position states are very

large in comparison to the distance travelled by the verte-
brae between timesteps. The largest displacements between
timesteps in the reference trajectory are 1.5mm, present in
the top vertebra in the X-direction. Thus, the weight w12 is
roughly 33% the size of this displacement, so w12N (0, 1)

has a large magnitude in proportion to the changes in states
due to the controller.

VI. RESULTS

The optimization problem (9)-(20) took 0.5-1 sec. to solve
at each timestep, using the Gurobi solver.

The controller tracked the positions of the vertebrae with
extremely low error, after an initial transient response. Fig.
4 shows the paths of the vertebrae in the X-Z plane as
they sweep through their counterclockwise bending motion,
including the reference trajectory (blue), the resulting trajec-
tory with MPC controller and no disturbances (green), and
the result of the controller with disturbances (magenta). Fig.
5 shows a zoomed-in view of the top vertebra, which had
the largest tracking errors of the three vertebrae.

The tracking errors for each state, for each vertebra, for
both simulations are shown in Fig. 6. In both simulations,
an initial transient is observed in the X-position and �-angle

-12 -10 -8 -6 -4 -2 0

Position in X (cm)

10

15

20

25

30

P
o
si

tio
n
 in

 Z
 (

cm
)

Position of vertebrae during tracking control

Reference Traj.
Result, No Disturbances
Result, With Disturbances

Fig. 4: Positions in the X-Z plane of all 3 of the vertebrae,
including the reference and the two simulations (with/without
disturbances), as the robot performs a counterclockwise
bend. Blue trajectories are same as those in Fig. 3.

-12 -10 -8 -6 -4 -2 0

Position in X (cm)

28

28.5

29

29.5

30

P
o
si

tio
n
 in

 Z
 (

cm
)

Position of Top Vertebra

Reference
Result, No Dist.
Result, With Dist.

Fig. 5: Positions in the X-Z plane of the top vertebra,
including the reference and the two simulations (with/without
disturbances), as the robot performs a counterclockwise
bend. The vertebra tracks the trajectory closely.

states. This is possibly due to a zero initial velocity of the
vertebrae, requiring the spine to rapidly move at the start of
its simulation to ”catch up” with the trajectory. After that,
all errors trend to zero, with the expected oscillations in the
noisy simulation.

Additionally, the absolute value of the sum of the errors
for the positions and angles are calculated in Fig. 7. The
total sum of the errors trend toward zero, as expected from
Fig. 6.

VII. DISCUSSION

The length of time taken to solve the optimization problem
for the controller (0.5-1 sec.) was longer than the timestep
of the simulation (0.001 sec.). Thus, the optimization proce-
dure will need to be made more efficient before using this
controller in hardware. This motivates the future use of two
different approaches to reduce solver time: first, a symbolic
Jacobian could be calculated for the A

t

and B

t

matrices,
reducing the computation load in the linearization. More
significantly, nonlinear model-predictive control (NMPC)
could be used to remove the linearization entirely. These
will be explored in future work.

0 2 4 6 8
-1

0

1

e
X
 (

cm
)

 Postitions (No Disturbances)

0 2 4 6 8
-1

0

1

e
Y
 (

cm
)

0 2 4 6 8

Time (msec)

-1

0

1

e
Z
 (

cm
)

0 2 4 6 8
-1
0
1
2
3

e
θ
 (

d
e
g
)

 Angles (No Disturbances)

0 2 4 6 8
-1
0
1
2
3

e
γ
 (

d
e
g
)

0 2 4 6 8

Time (msec)

-1
0
1
2
3

e
ψ
 (

d
e
g
)

Vertebra 1

 (Bottom)

Vertebra 2

 (Middle)

Vertebra 3

 (Top)

0 2 4 6 8
-1

0

1

e
X
 (

cm
)

 Postitions (With Disturbances)

0 2 4 6 8
-1

0

1

e
Y
 (

cm
)

0 2 4 6 8

Time (msec)

-1

0

1

e
Z
 (

cm
)

0 2 4 6 8
-1
0
1
2
3

e
θ
 (

d
e
g
)

 Angles (With Disturbances)

0 2 4 6 8
-1
0
1
2
3

e
γ
 (

d
e
g
)

0 2 4 6 8

Time (msec)

-1
0
1
2
3

e
ψ
 (

d
e
g
)

Vertebra 1

 (Bottom)

Vertebra 2

 (Middle)

Vertebra 3

 (Top)

Fig. 6: Tracking errors for all three vertebrae, with and without disturbances. Cartesian position states (x, y, z) on the left,
Euler angles (✓, �,) on the right. Position errors are in cm, rotation errors are in degrees.

0 1 2 3 4 5 6 7 8

Time (msec)

0

0.5

1

1.5

S
u
m

 E
rr

.
(c

m
)

Total error (abs. val.) for (x,y,z) states

No Dist.

With Dist.

0 1 2 3 4 5 6 7 8

Time (msec)

0

2

4

S
u
m

 E
rr

.
(d

e
g
) Total error (abs. val.) for angle (T, G, P) states

Fig. 7: Total tracking error (in absolute value), summing over
all three vertebrae, for the position (XYZ, above) and angle
(✓, �,�, below) states.

The many smoothing constraints and objective-function
additions require that designers tune this controller for differ-
ent use cases. Future work will look to reducing the need for
these extra terms. Nonlinear MPC (NMPC) may help, since
the dynamics linearization causes the problems that these
terms address. Additionally, including a trajectory of inputs,
instead of penalizing the magnitude of the inputs trajectory,
will allow the controller to find a more realistic optimum.

This is the first work (to the authors’ knowledge) that
tracks a state-space trajectory of a tensegrity spine robot
in closed-loop. The controller exhibits experimentally-stable
behavior. The controller’s low errors are promising for the
use of this controller in hardware, given some computational
improvements.

ACKNOWLEDGEMENTS
Many thanks to J. Friesen of [22], [23] for MATLAB

code that contributed to the dynamics solutions in sect. II.
Thanks to Profs. F. Borrelli and A. Packard who provided
valuable guidance during the early stages of this project,
during the course Experiential Advanced Control Design
(ME C231A) at UC Berkeley. Thanks to Kyunam Kim of
[15] for proofreading of sect. II. And many thanks to Prof.
Alice Agogino of the Berkeley Emergent Space Tensegrities
(BEST) Lab, as well as all the other BEST Lab members.

This research was supported by NASA Space Technology
Research Fellowship no. NNX15AQ55H.

REFERENCES

[1] Y. Fukuoka, H. Kimura, and A. H. Cohen, “Adaptive Dynamic Walk-
ing of a Quadruped Robot on Irregular Terrain Based on Biological
Concepts,” The International Journal of Robotics Research, mar 2003.

[2] L. R. Palmer and D. E. Orin, “Quadrupedal running at high speed
over uneven terrain,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, oct 2007.

[3] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “BigDog, the
Rough-Terrain Quadruped Robot,” IFAC Proceedings Volumes, 2008.

[4] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Com-
pliant quadruped locomotion over rough terrain,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
oct 2009.

[5] M. Khoramshahi, A. Sprowitz, A. Tuleu, M. N. Ahmadabadi, and A. J.
Ijspeert, “Benefits of an active spine supported bounding locomotion
with a small compliant quadruped robot,” in 2013 IEEE International
Conference on Robotics and Automation. IEEE, may 2013.

[6] K. Weinmeister, P. Eckert, H. Witte, and A.-J. Ijspeert, “Cheetah-cub-
S: Steering of a quadruped robot using trunk motion,” in 2015 IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR). IEEE, oct 2015.

[7] P. Eckert, A. Sprowitz, H. Witte, and A. J. Ijspeert, “Comparing
the effect of different spine and leg designs for a small bounding
quadruped robot,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, may 2015.

[8] S. Maleki, A. Parsa, and M. N. Ahmadabadi, “Modeling, control and
gait design of a quadruped robot with active spine towards energy
efficiency,” in 2015 3rd RSI International Conference on Robotics
and Mechatronics (ICROM). IEEE, oct 2015.

[9] T. Horvat, K. Karakasiliotis, K. Melo, L. Fleury, R. Thandiackal,
and A. J. Ijspeert, “Inverse kinematics and reflex based controller for
body-limb coordination of a salamander-like robot walking on uneven
terrain,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, sep 2015.

[10] D. Hustig-Schultz, V. SunSpiral, and M. Teodorescu, “Morphological
design for controlled tensegrity quadruped locomotion,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Deajeon, Korea: IEEE, oct 2016.

[11] K. Miki and K. Tsujita, “A study of the effect of structural damping
on gait stability in quadrupedal locomotion using a musculoskeletal
robot,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, oct 2012.

[12] A. P. Sabelhaus, H. Ji, P. Hylton, Y. Madaan, C. Yang, A. M. Agogino,
J. Friesen, and V. SunSpiral, “Mechanism Design and Simulation
of the ULTRA Spine: A Tensegrity Robot,” in ASME International
Design Engineering Technical Conference (IDETC) Volume 5A: 39th
Mechanisms and Robotics Conference. ASME, aug 2015.

[13] R. Skelton, R. Adhikari, J.-P. Pinaud, Waileung Chan, and J. Helton,
“An introduction to the mechanics of tensegrity structures,” in Pro-
ceedings of the 40th IEEE Conference on Decision and Control (Cat.
No.01CH37228), IEEE. IEEE, 2001.

[14] A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System Design and
Locomotion of SUPERball, an Untethered Tensegrity Robot,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, may 2015.

[15] K. Kim, A. K. Agogino, A. Toghyan, D. Moon, L. Taneja, and A. M.
Agogino, “Robust learning of tensegrity robot control for locomotion
through form-finding,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, sep 2015.

[16] L.-h. Chen, K. Kim, E. Tang, K. Li, R. House, E. Jung, A. M.
Agogino, A. Agogino, and V. SunSpiral, “Soft Spherical Tensegrity
Robot Design Using Rod-Centered Actuation and Control,” in ASME
International Design Engineering Technical Conference (IDETC)
Mechanisms and Robotics Conference. Charlotte, NC: American
Society of Mechanical Engineers, 2016.

[17] C. Paul, F. Valero-Cuevas, and H. Lipson, “Design and control of
tensegrity robots for locomotion,” IEEE Transactions on Robotics, oct
2006.

[18] B. R. Tietz, R. W. Carnahan, R. J. Bachmann, R. D. Quinn, and
V. SunSpiral, “Tetraspine: Robust terrain handling on a tensegrity robot
using central pattern generators,” in 2013 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics. IEEE, jul 2013.

[19] B. T. Mirletz, P. Bhandal, R. D. Adams, A. K. Agogino, R. D. Quinn,
and V. SunSpiral, “Goal-Directed CPG-Based Control for Tensegrity
Spines with Many Degrees of Freedom Traversing Irregular Terrain,”
Soft Robotics, dec 2015.

[20] K. W. Moored, S. A. Taylor, T. K. Bliss, and H. Bart-Smith,
“Optimization of a tensegrity wing for biomimetic applications,” in
Proceedings of the 45th IEEE Conference on Decision and Control.
IEEE, 2006.

[21] T. Bliss, T. Iwasaki, and H. Bart-Smith, “Central Pattern Generator

Control of a Tensegrity Swimmer,” IEEE/ASME Transactions on
Mechatronics, apr 2013.

[22] J. Friesen, A. Pogue, T. Bewley, M. de Oliveira, R. Skelton, and
V. SunSpiral, “DuCTT: A tensegrity robot for exploring duct systems,”
in ICRA, may 2014.

[23] J. M. Friesen, P. Glick, M. Fanton, P. Manovi, A. Xydes, T. Bew-
ley, and V. Sunspiral, “The second generation prototype of a Duct
Climbing Tensegrity robot, DuCTTv2,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, may 2016.

[24] B. Mirletz, I.-W. Park, T. E. Flemons, A. K. Agogino, R. D. Quinn, and
V. SunSpiral, “Design and Control of Modular Spine-Like Tensegrity
Structures,” in The 6th World Conference of the International Associ-
ation for Structural Control and Monitoring (6WCSCM), 2014.

[25] B. T. Mirletz, I.-W. Park, R. D. Quinn, and V. SunSpiral, “Towards
bridging the reality gap between tensegrity simulation and robotic
hardware,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, sep 2015.

[26] R. E. Skelton and M. C. de Oliveira, Tensegrity systems. Springer,
2009.

[27] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Learning to
Control Complex Tensegrity Robots,” in International Conference on
Autonomous Agents & Multiagent Systems (AAMAS), 2013.

[28] ——, “Flop and Roll: Learning Robust Goal-Directed Locomotion
for a Tensegrity Robot,” in Proceedings of The 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2014), 2014.

[29] A. Iscen, K. Caluwaerts, J. Bruce, A. Agogino, V. SunSpiral, and
K. Tumer, “Learning Tensegrity Locomotion Using Open-Loop Con-
trol Signals and Coevolutionary Algorithms,” Artificial Life, may 2015.

[30] D. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Transactions on Automatic Control, 1990.

[31] K. Worthmann, M. W. Mehrez, M. Zanon, G. K. I. Mann, R. G.
Gosine, and M. Diehl, “Model Predictive Control of Nonholonomic
Mobile Robots Without Stabilizing Constraints and Costs,” IEEE
Transactions on Control Systems Technology, jul 2016.

[32] Dongbing Gu and Huosheng Hu, “Receding horizon tracking control
of wheeled mobile robots,” IEEE Transactions on Control Systems
Technology, jul 2006.

[33] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. Tseng, “A linear time
varying model predictive control approach to the integrated vehicle
dynamics control problem in autonomous systems,” 2007 46th IEEE
Conference on Decision and Control, 2007.

[34] P. B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” Proceedings of the
2006 6th IEEE-RAS International Conference on Humanoid Robots,
HUMANOIDS, 2006.

[35] K. Caluwaerts, J. Bruce, J. M. Friesen, and V. SunSpiral, “State esti-
mation for tensegrity robots,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, may 2016.

[36] K. Caluwaerts, J. Despraz, A. Iscen, A. P. Sabelhaus, J. Bruce,
B. Schrauwen, and V. SunSpiral, “Design and control of compliant
tensegrity robots through simulation and hardware validation,” Journal
of The Royal Society Interface, jul 2014.

[37] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Sys-
tems, ser. Lecture Notes in Control and Information Sciences. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003.

[38] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation (IEEE Cat. No.04CH37508). IEEE, 2004.

[39] “Gurobi Optimizer Reference Manual,” Gurobi Optimization Inc.,
2016.

