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Abstract

The interest in using legged robots for a variety of terrestrial and space applications

has grown steadily since the 1960s. At the present time, a large fraction of these

robots relies on electric motors at the joints to achieve mobility. The load distributions

inherent to walking, coupled with design constraints, can cause the motors to operate

near their maximum torque capabilities or even reach saturation. This is especially

true in applications like space exploration, where critical mass and power constraints

limit the size of the actuators. Consequently, these robots can benefit greatly from

motion optimization algorithms that guarantee successful walking with maximum

margin to saturation.

Previous gait optimization techniques have emphasized minimization of power

requirements, but have not addressed the problem of saturation directly. This disser-

tation describes gait optimization techniques specifically designed to enable operation

as far as possible from saturation during walking. The benefits include increasing the

payload mass, preserving actuation capabilities to react to unforeseen events, pre-

venting damage to hardware due to excessive loading, and reducing the size of the

motors.

The techniques developed in this work follow the approach of optimizing a refer-

ence gait one move at a time. As a result, they are applicable to a large variety of

purpose-specific gaits, as well as to the more general problem of single pose optimiza-

tion for multi-limbed walking and climbing robots.

The first part of this work explores a zero-interaction technique that was for-

mulated to increase the margin to saturation through optimal displacements of the

robot’s body in 3D space. Zero-interaction occurs when the robot applies forces only
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to sustain its weight, without squeezing the ground. The optimization presented here

produces a swaying motion of the body while preserving the original footfall locations.

Optimal displacements are found by solving a nonlinear optimization problem using

sequential quadratic programming (SQP). Improvements of over 20% in the margin

to saturation throughout the gait were achieved with this approach in simulation and

experiments. The zero-interaction technique is the safest in the absence of precise

knowledge of the contact mechanical properties and friction coefficients.

The second part of the dissertation presents a technique that uses the null space

of contact forces to achieve greater saturation margins. Interaction forces can signifi-

cantly contribute to saturation prevention by redirecting the net contact force relative

to critical joints. A method to obtain the optimal distribution of forces for a given

pose via linear programming (LP) is presented. This can be applied directly to the

reference gait, or combined with swaying motion. Improvements of up to 60% were

observed in simulation by combining the null space with sway.

The zero-interaction technique was implemented and validated on the All Terrain

Hex-Limbed Extra-Terrestrial Explorer (ATHLETE), a hexapod robot developed by

NASA for the transport of heavy cargo on the surface of the moon. Experiments with

ATHLETE were conducted at the Jet Propulsion Laboratory in Pasadena, California,

confirming the benefits predicted in simulation. The results of these experiments are

also presented and discussed in this dissertation.
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and Darryll Pines. I am grateful for the positive influence they have had in my career.

I also wish to thank the many friends and roommates with whom I shared countless

fun moments, and who were always there to lend a helping hand. The “aero-friends”

in particular (and honorary members) have been a great crowd to spend time with:

Nikhil Nigam, Johannes Markmiller, Anja Fiebig, Parikshit Shah, Matt Tran, Di

Qiu, Harsh Mehta, Saurabh and Ruchi Bhindwale, and Mun Sang Yue. My long-

time friends from Mexico – Jorge Loyo and Yabin Escarpulli – have been trusty

companions throughout the years. To the many other people whom space prevents

vii



me from naming here individually, I offer a big, heartfelt Thank You.

As a memorable quote says, “No bucks, no Buck Rogers”. I am grateful for

the financial support of the following organizations: Mexico’s Consejo Nacional de
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Nomenclature

{W} World frame of reference

{R} Robot frame of reference

{L} Leg frame of reference

{T} Tool frame of reference

"r0,i,"rf,i Position of foot i before and after sag, in {W}
"r0,CG,"rf,CG Position of the center of mass before and after sag, in {W}
∆"ri,∆"rCG Displacement of foot i and the CG due to sag

Kinv Diagonal contact stiffness matrix

kxx, kyy, kzz Contact spring constants in the x, y, z directions

n Total number of legs

nc Number of feet in contact

ρmax,i Maximum reach for leg i at the current body position

"ρi Location of the foot relative to the leg’s joint i, in {L}
xb, yb, zb Position of the robot’s body expressed in the World frame

φb, θb,ψb Orientation (roll, pitch, yaw) of the robot’s body

∆xb,∆yb,∆zb Change in position of the robot’s body for optimization purposes

∆φb,∆θb,∆ψb Change in body orientation (roll, pitch, yaw)

J Optimization cost function OR

Jacobian matrix for a robotic leg

τ%i Torque ratio (percentage) of joint i

ẑi The z axis of joint i – for revolute joints it is also

the axis of rotation

S̃i Screw for joint i

ρi Location of the foot relative to joint i, expressed in {L}
Si,j Sensitivity of joint i’s torque to variations in force j

S%i,j Sensitivity of τ%i to variations in force j

θ A parameter for NESM calculation, see Equation 3.7

γ A parameter for NESM calculation, see Equation 3.8

ε Specific resistance
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g Gravity constant

m Robot mass OR

Number of joints per leg

P Power

R Leg stroke

Km Kinematic margin

λ Robot’s stride

σ Length of a body shift

βi Duty factor of leg i

φi Phase of leg i (not to be confused with the roll angle φb)

∆hi Distance that a foot has been lifted from its original position

"rC,i(z) Position of contact point i, in {W}
Φ Matrix formed of nc 3 × 3 identity matrices, see Equation 2.23

Ci Cross-product matrix, see Equation 2.27

Γ Balance matrix, resulting from stacking the Φ and C matrices.

See Equation 2.29

Abbreviations

AP Ankle Pitch joint

AR Ankle Roll joint

ATV All-Terrain Vehicle

ARC Ames Research Center

ATHLETE All Terrain Hex-Limbed Extra-Terrestrial Explorer

CG Center of Gravity

CM Center of Mass

CGU Carnegie Mellon University

CPS Conservative Polygon of Support

CPG Central Pattern Generator(s)

DFS Depth First Search
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DOF Degree(s)-Of-Freedom

EAP Education Associates Program (at NASA Ames)

EKF Extended Kalman Filter

ESM Energy Stability Margin

FPS Full Polygon of Support

GUI Graphical User Interface

IK Inverse Kinematic(s)

IMU Inertial Measurement Unit

IRG Intelligent Robotics Group (at NASA Ames)

JPL Jet Propulsion Laboratory

LM Levenberg-Marquardt

LP Linear Program(ming)

LQR Linear Quadratic Regulator

NASA National Aeronautics and Space Administration

NESM Normalized Energy Stability Margin

ODE Open Dynamics Engine

POS Polygon of Support

PQP Proximity Query Package

PRM Probabilistic Road Map

PS Polygon of Support

SBL Single-Query Bi-Directional Probabilistic Roadmap

Planner with Lazy Collision Checking

SNOPT Sparse Nonlinear OPTimizer

SQP Sequential Quadratic Programming

SSM Static Stability Margin

UNC University of North Carolina

Leg Joints

HY Hip Yaw joint
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HP Hip Pitch joint

KP Knee Pitch joint

KR Knee Roll joint

AP Ankle Pitch joint

AR Ankle Roll joint

Internal Components of the Leg Joints

MT Motor Tube

M Motor

P Planetary Reduction Stage

B Magnetic Brake

E+ Incremental Encoder

HD Harmonic Drive

FS Flexspline (of harmonic drive)

WG Wave Generator (of harmonic drive)

CS Circular Spline (of harmonic drive)

CT Coupling Tube

C Coupling between motor and harmonic drive

OT Output Tube

Ea Absolute Encoder



Chapter 1

Introduction

This chapter introduces walking robots and describes the problems addressed in this

work.

§1.1 motivates the use of walking robots.

§1.2 outlines the history of development of walking robots and gaits.

§1.3-1.4 discuss the advantages and disadvantages of walking robots.

§1.5 outlines the problem addressed in this work and why it is important.

§1.6 summarizes the main contributions of this research.

§1.7 provides an outline of the rest of this thesis.

The focus of this dissertation is the development of gait optimization techniques

to prevent joint saturation in legged robots. The problem of saturation is encoun-

tered when the torque or force demanded from the actuators reaches or exceeds their

maximum capacity.

The use of walking machines is interesting for various applications, including cargo

transport, entertainment, education, land mine removal, forestry and space explo-

ration. Their versatility allows them to access challenging terrains with minimum

impact and high safety. Many of these applications are likely to cause saturation,

for example when they are used to transport heavy cargo (e.g. [Wilcox 07]). Even

robots that do not normally operate at the limit of saturation can benefit from gaits

that place lower demands on their motors. Potential benefits include higher pay-

load, increased durability, better reaction to unsafe conditions like slippage, and the

1
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possibility of using smaller motors.

The remainder of this chapter will discuss the motivation for developing and us-

ing walking robots, some of their limitations, and an outline of the problems being

addressed in this dissertation.

1.1 Why Use Walking Robots?

Walking robots have many desirable characteristics. They are capable of omnidirec-

tional motion without the need for turn-in-place maneuvers. Their variable geometry

allows them to fit through tight spaces or fold compactly for transportation in small

vehicles (a useful capability in space exploration). They also benefit from a lower

impact on the terrain because they progress via discrete contacts instead of a contin-

uous track. This is especially important in dangerous environments like mine fields,

or where it is essential to keep the terrain largely undisturbed for scientific reasons.

One of their most useful characteristics is their versatility to access a wide variety of

terrains. Boulder fields, steep slopes and loose, sandy areas can all be traversed by

walking, in addition to any location accessible to wheeled vehicles.

Because of these benefits, suitable applications for walking robots include land

mine removal, planetary exploration, forestry, cargo transport on rugged terrain,

entertainment, and personal assistance in home or office environments. Figure 1.1

shows three examples of walking robots developed for space exploration, de-mining

and forestry applications.

(a) Space (ATHLETE) (b) De-mining (SILO 6) (c) Forestry (Timberjack)

Figure 1.1: Three applications of walking robots.
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An increasing amount of collaboration between biologists and roboticists has im-

proved the understanding of legged locomotion, and provided inspiration for the de-

sign of new robots. For example, biological research on the locomotion of cockroaches

has revealed that leg springiness plays the important role of passively compensating

for external disturbances that knock the insect out of stride [Full 02]. As a result, suc-

cessful motion in challenging situations is possible without the intervention of a power-

ful brain. The lesson has been incorporated into the design of RHex [Altendorfer 01],

a running hexapod with compliant 1-degree-of-freedom (DOF) legs (Figure 1.2).

Figure 1.2: The RHex robotic platform, a biologically inspired walking robot (Credit:
Kod*lab, Univ. of Pennsylvania).

Another example is the work of McGhee and Frank on the stability properties

of quadrupedal machines [McGhee 68b]. Their research found that a certain class of

gaits referred to as “wave gaits” maximizes stability along the direction of motion

(longitudinal stability). Interestingly, this type of gait is commonly used by 4-legged

animals during slow walking, suggesting that nature sometimes favors stability over

other possible benefits like energy conservation.

1.2 Historical Sketch of Walking Robots

Undoubtedly the interest in understanding and replicating walking locomotion has

existed for a very long time. According to Zielinska [Zielinska 04] historical evidence

of this interest dates back to antiquity, in the form of descriptions of mechanical
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elephants in India and a variety of articulated toys and decorative figures from Egypt

(circa XX century B.C.) and Greece (III century B.C.).

The earliest walking machine designed for a practical application appears to be

the Steam Man of Dederick and Grass [Dederick 68], shown in Figure 1.3. Patented

and actually built in 1868, the Steam Man was attached to the front of a carriage and

pulled it by means of steam power. It was kept balanced by the support structure

attaching it to the carriage, and the inventors estimated that their contraption would

be capable of speeds of up to 60mi
hr

:

“As the engine is capable of making more than a thousand evolutions a minute,

it would get over the ground, on this calculation, at the rate of a little over a mile a

minute. As this would be working the legs faster than would be safe on uneven ground

or on broad street cobble stones, it is proposed to run the engine at the rate of five

hundred revolutions per minute, which would walk the man at the modest speed of

half a mile a minute.” — Zadock Dederick, in a 1868 interview with the Newark (N.J.)

Advertiser [Buckley 07]

Figure 1.3: The Steam Man of Dederick and Grass. From US Patent 75874 [Dederick 68]
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It is not clear how far Dederick and Grass took their invention, but they seem to

have inspired other people to develop similar machines. They envisioned a variation

in the form of a Steam Horse, which according to them would “do the duty of twelve

ordinary creatures of the same species”. The design for such a machine was patented

by L.A. Rygg in 1893 [Rygg 93], and is shown in Figure 1.4. Rygg’s mechanical

horse was to be human-powered, and although it was never built there seems to be a

consensus that it constitutes the first design of a quadrupedal mobile machine.

Figure 1.4: The Mechanical Horse of L.A. Rygg. From US Patent 491927 [Rygg 93]

Between the late 1800’s and the mid 1900’s the construction of walking machines

did not progress much. On the other hand the formal study of gaits got truly un-

derway with the pioneering efforts of Eadweard Muybridge, a photographer born

in England who lived for many years in the American west. Muybridge was well

known in California as a landscape photographer. According to his biographers (e.g.
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Figure 1.5: The Horse in Motion, by E. Muybridge (now public domain).

[Solnit 04]), he was recruited in 1872 by Leland Stanford – former governor of Califor-

nia and founder of Stanford University – to help settle a popular question at the time:

whether the hooves of a horse ever leave the ground all at the same time. Muybridge

developed techniques to photograph Stanford’s own galloping horse at a high frame

rate, and found that there were indeed intervals when all of the horse’s hooves were

in the air (Figure 1.5). Having perfected these photographic techniques, Muybridge

embarked on further studies of animal locomotion, including a more comprehensive

look into horses, bisons and people [Muybridge 87, Muybridge 57]. His photographic

sequences remain useful references in the study of gaits.

The mathematical study of gaits was pioneered in the 1960’s by Tomovic and

Karplus [Tomovic 61]. Shortly thereafter Hildebrand [Hildebrand 65] created the con-

cept of the gait formula to be discussed in §3.5, which was later perfected by McGhee

[McGhee 68a]. Also in this period the discovery of the stability optimality of wave

gaits was made by McGhee and Frank [McGhee 68b].
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In the meantime, the development of walking machines acquired new momentum,

spurred partly by the advances in computer technology brought about by the space

program. It is hardly surprising that the creation of the first truly successful walking

robots had to wait until the advent of modern computers, given the complexity of the

mechanisms and the coordination required for their motion. Notable robots from this

period include the Iron Mule Train [Morrison 68], the GE Walking Truck [Mosher 68],

the Phoney Pony [McGhee 67] and the Big Muskie [Cox 70].

The 1970’s and 1980’s saw further advances in robot development and gait studies.

The first bipedal robot – WABOT 1 – was created by Kato around 1973 [Kato 73].

With biped robots came the need to formalize the study of dynamic stability, and in

1972 Vukobratovic introduced the concept of Zero Moment Point (ZMP), which has

remained an essential tool in the study of biped locomotion [Vukobratovic 04].

Multi-legged robots also moved forward – the first European walking robot was

developed at the University of Rome in 1972 [Petternella 74], and others were built

in Russia as well [Okhotsimski 79, Okhotsimski 80]. In the United States, the OSU

Hexapod was created in 1977 by McGhee [McGhee 79], followed by the much larger

Adaptive Suspension Vehicle by Waldron and McGhee in 1985 [Waldron 86b]. In

Japan, Hirose developed the PV II, a sophisticated quadruped which was the precur-

sor of the impressive Titan family of robots still under development at the Tokyo In-

stitute of Technology [Hirose 85, Hirose 91, Hirose 99, Kato 01]. Gait study benefited

from the introduction and development of free gaits by Kugushev and Jaroshevskij

[Kugushev 75], and adaptive gaits by Kumar and Waldron [Kumar 89].

An enormous body of research has been generated thereafter. The main develop-

ments after the 1990’s have focused primarily on biped locomotion, dynamic walking

and running, with an emphasis on surmounting the speed and efficiency disadvan-

tages that affect walking robots. Research on new types of actuators like artificial

muscles has also received significant attention.

More details on the history of walking robots can be found in the publications

by Song and Waldron [Song 89], Zielinska [Zielinska 04], González de Santos et al.

[de Santos 06], and Liu et al. [Liu 07]. A good overview of the history of bipeds is

also provided in [Siciliano 08], Chapter 16.
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1.3 Advantages of Walking Robots

Legged robots have many characteristics desirable for terrestrial and space applica-

tions, including omnidirectional motion, variable geometry, discrete contact points,

access to diverse terrain and unique modes of locomotion.

Omnidirectional Motion

Wheeled rovers, like automobiles, are subject to non-holonomic motion constraints.

This restricts them to move in certain directions permitted by the alignment of their

wheels, and limits the trajectories that they are able to follow. The addition of

degrees of freedom (DOF) through independently steerable or omnidirectional wheels

can help alleviate this problem to some extent, but the motion might still require

in-place turning, and in the case of omni wheels the possibility of roller jamming

caused by debris can easily arise.

In contrast, legged robots can be designed to be inherently omnidirectional, by

incorporating sufficient degrees of freedom per leg. As a result, they are able to

accelerate in any direction as long as the legs remain within their geometric and torque

constraints. This added versatility can facilitate traversal of challenging terrain by

following any path necessary.

Variable Geometry

The legs of a walking robot change geometry as the joint angles are varied. As a

result, the configuration of the robot is very adaptable and can help it fit through

tight spaces, such as when walking through a canyon or forest. It also enables a

very large robot to fold compactly for transportation, an ability that is essential in

planetary exploration where the robot must fit inside the launch vechicle’s payload

compartment.

This is illustrated in Figure 1.6, which shows the TriATHLETE robot developed

by NASA for heavy cargo transport on the moon. The robot is nearly 4m tall when

deployed, but is able to fit atop the lunar lander by folding its legs tightly. Once on

the moon it can self-deploy by re-extending its legs and stepping off the lander.



CHAPTER 1. INTRODUCTION 9

Figure 1.6: The TriATHLETE robot unfolding from a compact configuration atop a
prototype of a lunar lander (Credit: David Mittman, JPL)

Discrete Contact Points

Walking robots propel themselves by making contact with the ground at discrete

contact points along their path, instead of leaving behind continuous tread marks

characteristic of rolling. This can be advantageous for a number of reasons.

Figure 1.7 shows the SILO 6 robot, developed for the detection of buried land

mines. This application clearly benefits from a discontinuous contact pattern because

the robot can place its feet at carefully selected locations to avoid triggering a mine.

Thus an entire field can be surveyed robotically without danger to people.

Discrete contacts are also essential for traversing dense boulder fields, where step-

ping on rocks might be unsafe.

Finally, when exploring locations where the terrain itself is a target of scientific

interest, it is convenient to disturb it as little as possible. This can easily be accom-

plished with legged robots.

Figure 1.7: The SILO 6 robot with a scanning manipulator for land mine detection
(Credit: Center for Automatic Control, Spain)
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Access to Diverse Terrain

Perhaps the main advantage of legged robots over their wheeled counterparts is their

ability to explore a wide variety of easy and challenging terrains. Any ground ac-

cessible to wheeled rovers is also traversable by legged ones. Additionally, cluttered

environments, boulder fields, steep slopes, soft sand and even walls can be accessed

by means of limbs. The diversity of terrains that are potentially encountered on other

planetary bodies (Figure 1.8) makes walking robots particularly attractive for space

exploration.

(a) Lunar landscape at the Apollo 17 landing site

(b) Martian landscape near the
Pathfinder landing site

(c) Asteroid Itokawa pho-
tographed by the Hayabusa
spacecraft

Figure 1.8: Diverse terrains encountered in planetary exploration (Credit: NASA, JAXA)
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Unique Modes of Locomotion

The possibility of combining legs and wheels has already been exploited in a number

of robots. The wheels can be actuated or passive, resulting in unique modes of

locomotion. For example, Hirose and Takeuchi [Hirose 95] developed the Roller-

Walker hybrid robot shown in Figure 1.9. The robot is equipped with passive wheels

and an ingenious mechanism to rotate their axle 90◦ so that one side of the wheel is

in contact with the ground and functions as a regular foot. In this configuration the

robot behaves as a walker. If the wheels are rotated to the rolling position, the robot

moves forward by a skating motion. This type of locomotion is only possible because

of the wheel-leg combined design.

For legged robots equipped with actuated wheels, a combined walking+rolling

motion is possible. In this mode some or all the wheels can provide traction, while

the legs change shape to avoid obstacles by either making the wheel drive around them

or picking up the foot to go over. Terms like rollking have been coined to describe this

mode of locomotion, which combines the speed and efficiency advantages of rolling

with the versatility of robotic legs.

Figure 1.9: The Roller-Walker hybrid robot has passive wheels and can move by
rollerblading (Credit: Hirose-Fukushima Robotics Lab)
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1.3.1 Applications of Walking Robots

The special characteristics of walking robots mentioned above make them well suited

for many applications. Below are some examples of legged robots that have been

developed for a variety of missions.

Land Mine Detection and Removal

Manual detection and removal remains the leading technique for clearing land mines

from locations around the world. This is a slow process that carries a very high risk

for humans. Legged robots are particularly well suited for this application.

As previously mentioned, they are able to place their feet at carefully selected

points on the ground, and can be equipped with adequate sensors for detecting the

mines. These can then be destroyed by the robot itself by a number of different

approaches.

Robotic de-mining practically eliminates all risk for human operators, and the

process can be sped up by using multiple robots simultaneously. Some robots are

being developed for this purpose. Figure 1.7 shows the SILO 6, under development by

the Department of Automatic Control of the Spanish CSIC [Cobano 08]. The Tokyo

Institute of Technology is also experimenting with the Titan VIII robot [Hirose 98],

and its specialized successor – the Titan IX [Kato 01]– both shown in Figure 1.10.

(a) Titan VIII (b) Titan IX

Figure 1.10: Legged robots for de-mining applications (Credit: Hirose-Fukushima Robotics
Lab)
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Forestry

Forest management includes activities such as timber harvesting, which often takes

place in remote locations that are difficult to access. An option is to create roads

for trucks and other vehicles to reach the areas of interest, but this has a higher

impact on the forest because it requires removal of trees that would otherwise not

be harvested. An alternative is to use legged robots, because they can traverse the

difficult and cluttered terrain separating a road from an area of interest.

The Finnish company Plustech Oy (now part of John Deere) developed the Tim-

berjack precisely for this application (Figure 1.11). The robot is powered by hydraulic

actuators and can transport downed trees using its crane boom.

Figure 1.11: A legged robot for forestry applications (Credit: John Deere)

Military Cargo Transport

The idea of using legged robots as cargo “mules” is also actively being explored. A

quadruped called Big Dog has been developed by Boston Dynamics to assist soldiers in

carrying equipment out on the battlefield [Playter 06]. Its successor, LS3, is currently

under development and is intended to carry up to 180 kg of payload (Figure 1.12)

Entertainment and Education

Legged robots have also successfully entered the realm of entertainment. The Aibo

is a well known robotic pet developed by Sony (Figure 1.13(a)), and has become
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Figure 1.12: The LS3 military cargo robot (Credit: Boston Dynamics)

popular not only as a toy but also a research and education testbed. A version of the

famous RoboSoccer tournament is played with these robots, which offer interactive

capabilities for research on sensing, planning and mobility.

Sony also developed QRIO, a small humanoid robot with voice and video sensing

as well as very good mobility (Figure 1.13(b)). Although never commercialized by

Sony, similar robots are under development by other companies and will soon enter

the market.

A third example, the PLEO “robotic companion” from Innvo Labs (Figure 1.13(c))

is an interactive robot dinosaur designed to function as a pet. The robot is capable

of visual, audio and infrared sensing, as well as exhibiting different pre-programmed

and customizable personality traits. A growing community of developers exists who

use the PLEO in artificial intelligence research.

(a) Sony Aibo (b) Sony QRIO (c) Innvo Labs PLEO

Figure 1.13: Entertainment and educational robots (Credit: Sony, Innvo Labs)
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Personal Assistants

Because of their ability to move in cluttered environments, walking robots are being

considered as home or office assistants to perform a variety of tasks. These include

domestic chores like cleaning, carrying and delivering packages, and assisting handi-

capped and elderly people in their daily lives.

Humanoid robots, like the Honda Asimo (Figure 1.14(a)), have been under devel-

opment for many years, and are gradually achieving the necessary level of maturity

to perform well in domestic environments. Multi-legged robots are also being devel-

oped. For example, the ZeroCarrier from the Tokyo Institute of Technology (Figure

1.14(b)) is capable of ascending and descending stairs with a person on top.

(a) ASIMO humanoid robot (b) ZeroCarrier stair
climber

Figure 1.14: Personal assistant robots (Credit: Hirose-Fukushima Robotics Lab, Honda)

Planetary Exploration

Space agencies have considered legged robots for planetary exploration missions due to

their high versatility. The designs vary in complexity, including for example the Cana-

dian Space Agency’s simple wheel-leg rover Prompt (Figure 1.15(a)), NASA’s large

and complex ATHLETE cargo robot (Figure 1.15(b)), the versatile walking/climbing

Lemur robot also from NASA (Figure 1.15(c)), and the German Aerospace Center’s

highly sophisticated Crawler (Figure 1.15(d)). While no legged robots have thus

far ventured into space, advances in their development will undoubtedly make them

strong contenders as primary or secondary payloads in the future.



CHAPTER 1. INTRODUCTION 16

(a) Prompt (CSA) (b) ATHLETE (NASA)

(c) Lemur (NASA) (d) Crawler (DLR)

Figure 1.15: Some robots designed for planetary exploration. Credit: CSA, NASA, DLR

1.4 Disadvantages of Walking Robots

The above applications are very compelling, but challenges remain before walking

robots can see a more widespread use. Some of their current disadvantages include

higher complexity and cost, low energy efficiency, and low speed.

High Complexity and Cost

Walking robots are complex and expensive machines with many static and moving

parts. Each leg is usually composed of several rigid elements connected by articulated

joints. The joint assemblies can be fairly complex mechanical systems, consisting of

actuators, sensors, transmission gears and supporting structure.

Because of the many DOF, motion planning and execution are quite involved for

a walking robot. For example, moving forward in a straight line requires execution

of a sequence of steps and body shifts. These moves require careful planning to take

the legs safely through the necessary configurations, as exemplified in Figure 1.16.
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As the number of DOF grows the computational cost increases.

Figure 1.16: A robot’s leg must move through a sequence of configurations to execute
a step.

Another source of complexity is the possibility of motor saturation. The con-

sequences of saturation can be serious, ranging from interrupted motion to robot

instability and hardware damage. In addition to this, if the objective of the robot is

to transport cargo, actuator limitations are critical because they establish an upper

bound on the payload mass that can be successfully carried.

The need to prevent saturation greatly complicates the planning process, and

requires special motion techniques that are the focus of this dissertation.

Low Energy Efficiency

Efficiency estimates for several walking and driving machines have revealed that walk-

ing is less energy-efficient on benign terrain than rolling. To enable comparison of

diverse modes of locomotion, Gabrielli and von Kármán [Gabrielli 50] introduced the

concept of specific resistance as a metric of energy efficiency, a concept later extended

by Gregorio et al. [Gregorio 97] to allow comparisons at different speeds. 1

1Specific resistance is a dimensionless quantity computed as the power required (P ) divided by
the product of weight times speed (mgv):

ε =
P

mgv

Since the ratio of power to speed P
v

represents a force known as the tractive force, specific resistance
is the tractive force per unit of weight. A lower value of ε means less power is required to move at
a given speed, for some given vehicle mass. Since lower ε corresponds to more efficient locomotion,
this metric represents the equivalent of a drag coefficient, hence the name “resistance”.
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Figure 1.17: The specific resistance of various machines as a function of speed (from
[Gregorio 97]).

Gregorio used this metric to compare the efficiency of several wheeled and legged

vehicles at various speeds of their operational envelopes. The results are summarized

in Figure 1.17. Here, more efficient locomotion is toward the bottom of the plot.

Points near the bottom right represent very fast and efficient locomotion, and are

very desirable. Cars lie in the proximity of this region, while legged robots are closer

to the top left (slow and inefficient). In spite of this, the large payoffs that can be

obtained from legged robots motivate their continued development.

Low Speed

Referring again to Figure 1.17, it is possible to see that all walking robots developed

to date fall in the “very slow” category comparatively speaking (that is, near the left

half of the plot).
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(a) Petman – 7.1km
h

(b) Shelley – 100 − 200km
h

(c) ATHLETE – 0.006km
h

(d) MER – 1.8km
h

Figure 1.18: Speed comparison between wheeled and legged robots (Credit: Boston
Dynamics, Stanford University’s Dynamic Design Lab, NASA)

An interesting quantitative comparison can be made with some specific examples,

shown in Figure 1.18. As of October 2010, the fastest legged robot on Earth is Petman

developed by Boston Dynamics, capable of running at 7.1km
h

. In contrast, Stanford

University’s autonomous car Shelley has demonstrated speeds in excess of 200km
h

on

the Salt Flats at Bonneville, and has successfully negotiated the challenging Pikes

Peak hill climb at speeds surpassing those of many drivers [Blackman 10].

So far no legged robot has made the trip to another planet. However, test data

available for the ATHLETE lunar robot sets its current walking speed at about

0.006km
h

. By comparison, the Mars Exploration Rovers are capable of 1.8km
h

.

Significant advances are required to improve the speed of legged machines. Dy-

namic walking and running have thus become popular areas of research, and certainly

a main thrust in the development of legged robots. The fastest legged animal on Earth
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– the cheetah – is capable of speeds as high as 120 km
h

, and developing a robot able

to move at similar speeds will likely remain an exciting challenge for years to come.

1.5 Research Motivation

The goal of this thesis is to develop techniques for optimizing the gait of a walking

robot to prevent saturation with the largest margin possible. The benefit of maxi-

mizing the margin to saturation include:

• The payload that the robot can carry with a given set of actuators is maximized.

• Damage to the hardware due to over-torque situations is prevented.

• Actuation capabilities are preserved for the purpose of reacting to unexpected

situations like foot slippage.

• The possibility of saturation due to unmodeled environment characteristics (e.g.

bumps, slopes) is reduced.

• Useful information is obtained about the lower bound of actuation with which

a gait can be executed. This translates into the smallest motors that can po-

tentially be used on the robot.

Depending on the situation, different techniques can be pursued to maximize the

margin to saturation. One possibility is to take advantage of the multiplicity of

force combinations that satisfy static equilibrium (collectively referred to as a null

space). This means that the robot can squeeze the ground or its own body to direct

the net force at each foot in an optimal way relative to critical joints. Contrary to

intuition, important torque reductions can be obtained from using this null space of

forces. Chapter 6 will describe a technique to find the optimal distribution of forces

for statically-stable walking robots.

It is also possible to move away from saturation by displacing the robot’s center

of gravity (CG) to modify the vertical distribution of forces. In this case, a zero-

interaction gait is executed. This means that no squeezing of the ground or chassis
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takes place, and the vertical forces are adjusted by means of body offsets. The result

is a zig-zagging motion of the body referred to as sway. Zero-interaction optimization

is the safest alternative when the contact friction coefficient is unknown. Chapter 4

describes how the optimal displacements of the body are determined, and how they

are applied to improve a reference gait.

In fact, body sway and null-space utilization can be combined to achieve the

highest possible actuation margin for a given gait. This avenue is also explored in

Chapter 6.

To guarantee that the full benefit of these optimization techniques is obtained,

it is necessary to equip the robot with closed-loop force control capabilities so that

the contact forces can be adjusted precisely. In the absence of force control the

actual benefit is determined by a number of factors, including terrain characteristics,

contact mechanics and transmission non-backdrivability. These issues are analyzed

in Chapter 5.

1.6 Summary of Contributions

The research described in this dissertation makes the following main contributions to

the field of gait generation for walking robots:

• Development and testing of a zero-interaction gait optimization technique that

makes use of body sway to prevent joint saturation in walking robots. Im-

provements of ≥20% in saturation margin were achieved in simulations and

experiments with NASA’s ATHLETE robot, a hexapedal wheel-in-leg rover for

lunar exploration. The details of this technique are introduced in Chapter 4.

• Development of a gait optimization technique that takes advantage of the null

space of ground contact forces. This technique determines the optimal force

distribution via linear programming, and applies it to a reference gait by itself

or in combination with body sway to maximize actuation margin. A total

improvement of ≥60% in actuation margin was observed in simulations of the
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ATHLETE robot executing a reverse wave gait. This technique is described in

Chapter 6.

• Development of a method to compute robot sag and contact forces simulta-

neously. The new technique allows accurate calculations with heterogeneous

contact stiffnesses, and analysis of the gradual force redistribution that occurs

during foot lifting and dropping transitions. The method is described in Chap-

ter 2.

1.7 Organization of Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 describes the ATHLETE robot testbed, and outlines the model and tech-

niques used to compute contact forces and joint torques.

Chapter 3 outlines the process of gait generation and provides a detailed description

of related work.

Chapter 4 discusses gait optimization under zero-interaction assumptions. A method

to obtain optimal body displacements is presented, and its use for the purpose of

optimizing the robot’s gait to take advantage of sway is discussed. The chapter

also presents simulation results for the ATHLETE robot.

Chapter 5 presents a sensitivity analysis and a discussion of the effects of contact

force variations on joint saturation. Insights into how these variations translate

into terrain characteristics are also provided. The analysis contained in this

chapter is relevant to understand the impact that these external factors can

have on the zero-interaction optimized gait in the absence of closed-loop force

control.

Chapter 6 discusses gait optimization techniques that make use of the nullspace of

contact forces to increase the margin to saturation further. A method to obtain

the optimal force distribution for any given pose of the robot is presented. The
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method can be applied directly to a reference gait, or combined with body sway

for largest benefit. Both cases are discussed, and simulation results for the

ATHLETE robot are presented.

Chapter 7 presents experimental results for the zero-interaction sway optimization

technique on the ATHLETE robot. The experiments were conducted on the

Mars Yard at the Jet Propulsion Laboratory in Pasadena, California, and con-

firmed the reduction in torque percentages achieved by body sway.

Chapter 8 summarizes the contributions and lessons learned, and describes avenues

for future research.



Chapter 2

Description and Modeling of the

Robot

This chapter describes the solution technique developed for force calculations on robots

with compliant contact points, and explains the procedure to calculate joint torques. It

also introduces the ATHLETE hexapod robot, which was the testbed for this research.

§2.1 describes the ATHLETE robot.

§2.2 follows with a discussion of the traditional technique for calculation of contact

forces, and introduces a new method for simultaneous solution of forces and sag.

§2.3 explains the method to compute joint torques.

§2.4 explores the existence of nullspaces of forces and torques, with emphasis in the

relation between the nullspace and the number of legs/DOF.

§2.5 discusses future improvements that can be made to the model.

2.1 Testbed Description

The experiments presented in this thesis were conducted on JPL’s All-Terrain Hex-

Limbed Extra-Terrestrial Explorer (ATHLETE) robot (Figure 2.1). ATHLETE is a

wheel-in-leg robot with six legs, designed to carry heavy cargo and crew members on

the surface of the Moon. The total mass of the robot without payload is 895kg.

Each leg has six degrees of freedom and a wheel at the end, which can also be

used to power tools using a mechanical adapter. The design of ATHLETE as a

24
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Figure 2.1: The ATHLETE robot at Moses Lake, WA. Note scale relative to operator.

walker/roller allows it to traverse the entire spectrum of terrains it would encounter

on the moon, using various modes of locomotion. The robot is capable of rolling

like a standard rover in benign terrain, or applying the brakes and walking across

difficult terrain. The joints of each leg are equipped with highly-geared electric mo-

tors in order to transmit sufficient torque while maintaining a reasonably small and

lightweight design, a challenge that is common to all robots for space applications.

The specifications of each joint are summarized in Table 2.1.

Joint Angle Limits Gear τmax

Min [◦] Max [◦] Ratio [N-m]

1. Hip Yaw (HY) -100 220 13100:1 1530

2. Hip Pitch (HP) -90 90 13100:1 1530

3. Knee Pitch (KP) -200 155 6591:1 738

4. Knee Roll (KR) -115 115 3640:1 497

5. Ankle Pitch (AP) -110 110 4150:1 497

6. Ankle Roll (AR) -115 115 3640:1 497

Table 2.1: Main specifications for the joints of an ATHLETE leg.
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2.1.1 Robot Sensing

Cameras

The sensor suite on ATHLETE includes a total of 11 stereo camera pairs, organized in

three groups: 6 navcam pairs mounted on each of the six outside faces of the chassis,

3 hazcam pairs mounted on three non-consecutive internal corners of the chassis, and

finally two toolcam pairs, mounted near the wheel of legs 1 and 6. The navcams

are setup with overlapping fields of view in order to provide a full 360◦ coverage of

the ground around the robot. The view provided by the navcams is most useful for

driving because of the slightly higher aim. The hazcams look toward the inside of the

robot and provide a view of the ground directly underneath it. These cameras are

also able to see the legs, and a certain distance beyond them. Finally the toolcams are

intended for use during more dexterous operations such as drilling or manipulation

when the appropriate end-effectors are attached to the axle of the wheels. Figure 2.2

shows the combined field of view of the navcams and hazcams.

Figure 2.2: The ATHLETE field of view provided by the cameras extends to a radius of
approximately 3 body lengths. Blind spots are caused by occlusions and self-imaging.
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Torque Sensors

The ATHLETE robot is equipped with indirect torque sensing at each joint. These

measurements are based on estimation of the torsional deformation of each joint by

means of two encoders located at the input and output of the joint [Collins 07]. A

schematic of the knee pitch joint is shown in Figure 2.3. This joint connects the thigh

and shin of each leg, and is assembled in the following way:

Figure 2.3: Components of an ATHLETE joint.

A motor tube (MT ) is attached to the thigh, and contains the motor assembly

which consists of the motor (M ), planetary reduction stage (P), magnetic brake (B)

and incremental encoder (E+). The planetary gear provides the first stage of reduc-

tion; the rest is introduced by a harmonic drive, which in turn consists of three parts:

a flexspline (FS ), a wave generator (WG) and a circular spline (CS ). The flexspline is

rigidly attached to the motor tube via a coupling tube (CT ). This keeps the flexspline

from rotating, and leaves the harmonic drive in a configuration with reduction ratio

R + 1, where R is the reference ratio provided by the manufacturer [LLC 08]. Thus

the input to the harmonic drive becomes the wave generator (connected to the motor

via a coupling C ), and the output is the circular spline. Therefore to transmit motion

to the shin, the CS is connected to an output tube (OT ) which is rigidly attached to
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the shin. Finally, the output of the harmonic drive is also connected to an absolute

encoder (Ea).

The difference between the angle indicated by the incremental and absolute en-

coders is a measure of the torsional deformation of the joint. In order to infer the

torque, a calibration routine is followed to obtain stiffness curves for each of the

36 joints, by applying known torques to them. The torque measurement system is

discussed in detail in [Collins 07].

Inertial Measurement Unit

In addition to the cameras and torque sensors, the robot is equipped with an Inertial

Measurement Unit (IMU) manufactured by MicroStrain (Figure 2.4). The work pre-

sented in this thesis makes use of the IMU only to determine the spatial orientation

of the body of the robot, via the attitude quaternion reading.

Figure 2.4: The IMU on ATHLETE. Each side is 6cm long.

2.1.2 Frames of Reference

The operation of legged robots requires the definition of a number of reference frames

attached to the robot and the environment. Starting with the robot, one commonly

selects a body or robot frame – {R} – which is usually attached to the centroid of

the body or some other convenient part of it. Since each limb is itself a robotic

manipulator, it is also convenient to define the base frame for each leg, referred to

as the {Li} frame, where i is the leg number. It is also necessary to define a frame
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attached to the end-effector (in this case the foot) of each leg. This is referred to as

a foot or tool frame, and represented as {Ti} for each of the robot’s feet. Finally,

a fixed reference frame is attached to the ground at some convenient location (often

the starting location of the robot). This inertial frame serves as a reference to define

quantities such as distance covered and robot orientation, and is labeled the world

frame {W}. Other reference frames can be defined as the application requires.

Figure 2.5 shows the frames selected the ATHLETE robot.

Figure 2.5: Reference frames for the ATHLETE robot (Image by Matthew Heverly, Cour-
tesy NASA, Jet Propulsion Laboratory, California Institute of Technology)

2.2 Calculation of Contact Forces

When calculating the contact forces for a robot in static equilibrium with nc feet on

the ground there are 3nc force components to solve for, but only 6 obvious equations

to write: the sums of forces and moments on the robot. This means that the sys-

tem of equations is under-specified, and it is not possible to solve for the reaction
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forces without making special assumptions or adding constraints. The most common

assumptions are that the robot and ground are rigid, and the tangential forces at

the contact points are zero. As will be discussed below these are not always good

assumptions, especially in robots with physical or contact compliance.

2.2.1 Pseudo-Inverse Approach

The calculation of contact forces is traditionally done by solving the system of 6

equations representing the balance of forces and moments on the robot. This system is

underconstrained, since there are only 6 equations for 3nc unknown force components,

when nc feet are in contact with the ground. Therefore, the standard procedure is

to use the pseudoinverse solution, which has been proven to yield the least-norm

zero-interaction case [Waldron 86a, Kumar 90]. This means that if a line is drawn

connecting any two feet in contact, the difference of the projections of their reaction

forces along that line will be zero; i.e., the legs are not squeezing.

Figure 2.6 shows the bottom view of a legged robot. In order to have zero inter-

action, the difference of forces along any of the indicated dashed lines must be zero.

This is not the case in the example shown because of the blue tangential forces. On

horizontal ground, zero-interaction happens iff all tangential forces are exactly zero.

On slopes, iff they are all parallel and have the same norm.

Figure 2.6: A robot that is not in zero interaction
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When applied to robots with compliant contact points, some disadvantages exist

with the pseudoinverse technique. First, the balance of forces and moments is done

assuming perfectly rigid contacts, so the effect of compliance is not captured. In other

words, the pseudo-inverse solution is an approximation that assumes zero sag.

Second, the technique is unable to capture the gradual redistribution of forces

that occurs while lifting or placing a foot. It can be desirable to model this effect for

pose optimization or sag mitigation.

Finally, the pseudoinverse becomes inaccurate if the stiffness of the contact points

is different. In real life the load carried by each leg is proportional to its contact

stiffness, an effect that is not accounted for in the traditional pseudoinverse solution.

Figure 2.7 illustrates this with a simple example of an “M”-shaped 3-legged robot.

In the first case, all contact points have equal stiffness kz and each leg carries 1
3 of the

weight. When the stiffness of the middle contact point is reduced by 50% the force

carried by this leg decreases by the same amount relative to the other two, since the

spring deformations are all the same. The correct solution is the one shown in Figure

2.7(b). However the pseudoinverse formulation would always return the distribution

from Figure 2.7(a), because the spring constants are not used in the calculation of

forces.

W

∆z1

kzkzkz

W
3

W
3

W
3

(a) Same spring constants

W

∆z2 > ∆z1

kzkz
kz

2

2W
5

2W
5

W
5

(b) Different spring constants

Figure 2.7: The pseudo-inverse method always returns a force distribution that as-
sumes the same stiffness at every contact point (left). The correct force distribution
depends on the individual spring constants (right).
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2.2.2 Spring-Mass Force Model

In order to address these drawbacks, the contact points are modeled here as arrays of

3 springs oriented with the tangential-normal frame of reference as shown in Figure

2.8. A system of equations that are functions of the reaction forces can then be

written. The resulting system is nonlinear and must be solved numerically.

z
yx

yk

xk
zkα

Figure 2.8: Spring-mass model for reaction force and sag calculations.

Similar models have been used in the past by a few authors (e.g. [Silva 05]).

However there is a key difference in the way it has been used: authors that have

modeled the contact points as springs usually calculate the reaction forces first using

the pseudo-inverse formulation, and then use the spring equation to compute sag. In

this dissertation the springs are included directly in the force calculations, with the

advantages that have already been outlined.

Figure 2.9 shows the positions of the feet and CG before and after sag, expressed

in a fixed reference frame (in this case {W}). These are given by Equations 2.1-2.2.
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XW

ZW

"r0,i "r0,i+1

"r0,CG

(a) Before sag (tires undeformed)

XW

ZW

"rf,i "rf,i+1

"rf,CG

(b) After sag (tires deformed)

Figure 2.9: Springs before and after sag.

Before : "r0,i; (2.1)

: "r0,CG

After : "rf,i = "r0,i + ∆"ri; (2.2)

: "rf,CG = "r0,CG + ∆"rCG

Where for a linear spring the displacements in the (X,Y, Z) directions are given

by:

∆"ri = Kinv · "fi (2.3)

Here Kinv is a diagonal stiffness matrix, defined in Equation 2.4. This matrix can

be different for each foot if the spring constants are not all the same, as would be the

case when different inflation pressures have been set at each foot. This also applies

when a robot is transitioning from one kind of terrain to another, in which case some

feet might be on stiffer ground than others.

Kinv =









1
kxx

0 0

0 1
kyy

0

0 0 1
kzz









(2.4)

Now it is possible to write the sum of forces and moments about the fixed frame
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of reference. This results in the first 6 balance equations:

∑

Contact

(

"fi

)

+ m"g = 0 (2.5)

∑

Contact

(

"rf,i × "fi

)

+ "rf,CG × m"g = 0 (2.6)

Assuming all the compliance is at the contact points and the robot is rigid oth-

erwise, one can next write equations that constrain the geometry of the robot before

and after spring deformation. With nc feet in contact, the next nc equations state

that the distance between consecutive feet (i.e. between feet i and i + 1) remains

constant:

‖"r0,1 − "r0,2‖ − ‖"rf,1 − "rf,2‖ = 0 (2.7)

‖"r0,2 − "r0,3‖ − ‖"rf,2 − "rf,3‖ = 0
...

‖"r0,6 − "r0,1‖ − ‖"rf,6 − "rf,1‖ = 0

That is, referring to Figure 2.9, the distance between the centers of wheels i and

i + 1 is the same in Figure 2.9(a) and Figure 2.9(b). This is actually true between

any pair of feet on the robot, and can be repeated for non-consecutive feet until the

robot’s geometry has been fully constrained. Proceeding in this manner, the next

block of equations comes from the constant distance skipping one foot (i.e. between

feet i and i + 2), for the load-bearing feet:

‖"r0,1 − "r0,3‖ − ‖"rf,1 − "rf,3‖ = 0 (2.8)

‖"r0,2 − "r0,4‖ − ‖"rf,2 − "rf,4‖ = 0
...

‖"r0,6 − "r0,2‖ − ‖"rf,6 − "rf,2‖ = 0
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At this point a total of 3nc equations with 3nc unknown force components for

the feet in contact are available. However, closer inspection of Equation 2.6 reveals

an additional dependency on the final position of the CG. This position needs to be

calculated as well, and strictly speaking 3 more equations are needed which define

the CG location before and after spring deformation. In practice, it was found that

overconstraining the system by adding more CG equations results in better numerical

convergence. For this reason n additional equations are used which indicate the

spacing between the CG and each foot of the n-legged robot:

‖"r0,CG − "r0,1‖ − ‖"rf,CG − "rf,1‖ = 0 (2.9)
...

‖"r0,CG − "r0,6‖ − ‖"rf,CG − "rf,6‖ = 0

Equations (2.5) through (2.9) are solved numerically using the Levenberg-Marquardt

algorithm, with the optimization variables being the reaction force components and

the final location of the CG. Note that the model outlined above can be used for any

combination of feet in the air and on the ground. Some observations can be made:

1. In some cases the calculated reaction forces might require a foot to pull down.

While physically impossible for ATHLETE, this is a correct calculation, and

would not be out of the question for a robot with hooks or other grappling end-

effectors (e.g. a climbing robot). If it is desired to eliminate solutions that pull,

additional constraints can be added to enforce fz,i ≥ 0 or fz,i ≤ 0, depending

on how the reference frames where chosen.

2. The problem becomes more difficult to solve as the spring constants get stiffer.

Numerically, this is caused by the elements of Kinv approaching zero. Physically,

this means that the robot approaches the unrealistic situation of perfectly rigid

contact points. Note that as Kinv → 0 Equations 2.7-2.9 effectively vanish and

only the balance equations remain. If the robot under consideration adjusts to

this model, the pseudoinverse solution is a better choice.
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Incorporating Lift/Drop Transitions

Despite the generality of the above model, it still fails to capture the force redistribu-

tion that occurs when lifting or setting down a foot. In other words, it assumes that

a foot is either fully loaded or bears no load. This is sufficient for many situations.

However, if it is desired to explore the redistribution of loads to mitigate the effects

of sag, an extension to account for lift/drop transitions is needed.

For this purpose, contact points for each foot are defined and denoted by "rC,i.

That is, "rC,i represents the location of foot i, expressed in the inertial reference frame,

at which the bottom of tire i touches the ground and starts bearing load. On an

arbitrary terrain, these contact points are (xi, yi, zgnd@(xi,yi) + Rtire), and change for

a given foot only when its (x, y) coordinates change. The contact points can be

visualized as the fixed attachments of the springs to the ground in Figure 2.8

Now the force exerted by a given foot is redefined in terms of the contact points.

Let the distance that foot i has been lifted off the ground (assuming no sag) be:

∆hi = "rC,i(z) − "r0,i(z) (2.10)

Note that ∆hi > 0 if the leg has been lifted (+Z is down). Assuming a flat plane,

the contact springs are affected differently – X and Y are able to apply their full

forces as long as the tire is in contact and the foot does not slip. Z, however, has

constantly diminishing action as the leg is lifted. This must be adequately portrayed

in the corresponding equations. Thus for the linear spring model the forces will be

given as follows:

fi(x) =

{

−kxx · ∆"ri(x), if in contact

0, otherwise
(2.11)

fi(y) =

{

−kyy · ∆"ri(y), if in contact

0, otherwise
(2.12)

fi(z) =

{

−kzz · (∆"ri(z) − ∆hi) , if in contact

0, otherwise
(2.13)
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Where the contact condition is provided by:

In contact =

{

true, if ∆"ri (z) ≥ ∆h

false, otherwise
(2.14)

Instead of solving for the reaction forces and final location of the CG, it is more

convenient to choose the design variables of Levenberg-Marquardt to be the displace-

ments of each foot and the CG. The force at each foot is computed internally using

Equation(2.11). The geometry constraints guarantee that the foot displacements sat-

isfy the rigidity assumption. With this method the number of equations remains

constant because contact or lack thereof is now detected automatically.

2.2.3 Experimental Verification of Spring Constants for ATH-

LETE

In order to use the previously outlined force model on ATHLETE, it was necessary

to determine the spring constants for the contact points. The robot is equipped with

tires (either pneumatic or Michelin Tweels c©, Figure 2.10), so the spring constants are

given by the stiffness of these tires when the robot is on hard ground like concrete,

and by a combination of tire and soil stiffness when on compliant ground. Since all

the experiments were conducted indoors or on the Marsyard at JPL which has fairly

rigid soil, the spring constants were chosen to be the ones for the tires.

(a) A Michelin Tweel c© (b) Maxxis pneumatic tires

Figure 2.10: Tweels c© and tires on ATHLETE
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The manufacturer of the tires (Maxxis) provided force-deformation curves for

different inflation pressures. The slope of these curves provides the stiffness constant

for each spring. Tires were inflated to 8psi and the robot was moved through a series

of poses in order to verify these constants, as well as the sag calculations. It was found

that the tires were less stiff than the data sheets indicate. Most likely this is due to

wear and tear, as well as physical variations in individual tires during manufacturing.

The stiffness values are in the range of 3-5 kgf
mm

.

In the case of the Tweels, their approximate vertical stiffness was obtained from

Michelin. The Tweels behave as two-stage springs, with higher rigidity above 500

kgf of load when the outer spokes are fully compressed and the inner hub begins to

deform. The vertical stiffness is 7.5 kgf
mm

from 0 to 500 kgf, and 40 kgf
mm

from 500 kgf

to 2500 kgf. The Tweels were not used for any of the experiments presented in this

thesis.

2.3 Joint Torques

Given the forces at the feet, the joint torques that exactly balance them are obtained

via the transpose of each leg’s Jacobian matrix, as follows:

"τext = JT "F (2.15)

Where:

"τext is the vector of joint torques that balance the external forces applied at the foot.

"F is the vector of applied forces/moments at the foot, i.e. "F = {fx, fy, fz,Mx,My,Mz}T .

JT is the transpose of the Jacobian matrix, expressed in the leg frame.

The Jacobian can be obtained by the cross-product method or screw theory as

outlined in [Fu 87, Collins 07], as follows:

J =
[

S̃1S̃2S̃3S̃4S̃5S̃6

]

(2.16)
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Where S̃i are joint screws, defined as

S̃i =

{

ẑi × "ρi

ẑi

}

(2.17)

Here,

"ρi = "rfoot − "ri (2.18)

That is, "ρi is the location of the foot with respect to joint i, expressed in the leg

frame, and ẑi is the rotation axis of revolute joint i, also expressed in the leg frame. 1

For robots with massless legs, Equation 2.15 represents the total joint torques. If

the mass of the legs is significant as with ATHLETE, the torques due to gravity must

also be included, and the total torques become:

"τtot = "τext + "τgrav (2.19)

The calculation of gravity torques is outlined in [Collins 07] for the ATHLETE

robot.

2.4 Multiplicity of Force/Torque Solutions — The

Null Space

The objective of this section is to describe the relation between the null space of

contact forces and the number of legs/DOF of the robot. The dimensions of the

following two linear systems provide the necessary information:

1. The force-torque correspondence for an individual leg (Equation 2.15): "τ = JT "F

2. The force-moment balance for the whole robot (Equations 2.5 and 2.6):
∑ "F = 0,

∑ "M = 0

1Actually the equations can be expressed in any reference frame, as long as consistency is main-
tained throughout. For example, if the Jacobian is expressed in the tool frame, the external forces
must also be expressed in that frame.
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2.4.1 Solutions for Individual Legs

Referring to Equation 2.15 the dimensions of each component are as follows:

• "τ : m × 1, where m is the number of joints in the leg.

• JT : m × 6

• "F : 6 × 1

In these equations the applied wrench "F is always a vector with 6 components.

These include the 3 cartesian components of the net applied external force, and the

3 components of the net external moment. Some of these elements are sometimes

known to be zero, for example in the case of a robot whose contact points are unable

to transmit moments.

Number of solutions

The linear system JT "F = "τ relates to the number of force and torque solutions as

follows:

• The dimensions of JT indicate how many combinations of external forces and

moments produce the same set of joint torques.

• Conversely, the dimensions of (JT )−1 indicate how many possible combinations

of joint torques would result in a desired force/moment at the end effector.

The solution of the system in either direction is of interest in walking robots:

output forces from applied joint torques relate to control (e.g. force control), while

torques from forces relate to sensing (e.g. estimated set of joint torques that a given

load will produce).

From the above discussion, the following can be concluded about the number of

possible solutions:

• If m < 6, then JT is fat and the system has fewer DOF than variables to control.

This means that: (a) there is an infinite number of external force/moment
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combinations that yield the same joint torques, and conversely (b) it might not

be possible to find a set of joint torques to achieve a desired force/moment. In

other words, the system is underactuated.

• If m = 6, then JT is square and a unique solution exists in either direction,

assuming no singularities are encountered.

• If m > 6, then JT is skinny and redundancy exists: more than one combination

of joint torques can be found to achieve a desired force/moment output. How-

ever there might not be any force/moment combination that results in a given

set of torques.

The above holds under the assumption that JT is full-rank. If that is not the case

it means that one or more of the components of "F have no effect on the joint torques.

Conversely, if (JT )−1 is not full rank, there will be one or more joints that have no

effect on the output force/moment.

The ATHLETE robot is equipped with 6 joints per leg, and thus falls into the case

of 1:1 correspondence between forces and torques. The majority of walking robots in

existence today fall into the m ≤ 6 category. Smaller robots tend to use 3 joints per

leg (hip yaw, hip pitch and knee pitch). This is the minimum number of joints that

allows simultaneous control of all 3 cartesian coordinates of the foot. Walking robots

with only one DOF per leg exist (e.g. RHex), but this constrains their locomotion

capabilities to the use of less traditional wheel-legs and the corresponding regular gaits

that are possible with these. An example in the m > 6 category is the TriATHLETE

robot currently under development at NASA’s Jet Propulsion Laboratory, which is

equipped with 7 joints per leg.

2.4.2 Solutions for the Complete Robot

To examine the nullspace for the entire robot it is necessary to rewrite Equations 2.5

and 2.6 in matrix form.
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Balance Equations

Let "f be a vector of reaction forces at the feet in contact expressed in the robot frame

{R}, and "fg be the weight vector, also in the {R} frame. Let nc be the number of

feet in contact, then:

"f = [fx1, fy1, fz1, . . . , fxnc
, fync

, fznc
]T (2.20)

"fg = m"g (2.21)

Equation 2.5 can be rewritten as follows:

Φ"f = −"fg (2.22)

Where the matrix Φ is composed of as many 3× 3 identity matrices as feet are in

contact with the ground:

Φ = [I| . . . |I]3×3nc
(2.23)

In order to write the net moment about the CG of the robot, the matrix form of

the cross product of two vectors is useful:

"r × "f = Ci
"f (2.24)

Where Ci is the cross-product matrix:

Ci =









0 −rz ry

rz 0 −rx

−ry rx 0









(2.25)

Equation 2.6 can now be rewritten in matrix form as follows, assuming the mo-

ments are taken about the CG and the reaction forces are given in the {R} frame:

C "f = 0 (2.26)
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Where the matrix C is the collection of the cross-product matrices for the feet in

contact:

C = [C1| . . . |Cnc
]3×3nc

(2.27)

Combining Equations 2.22 and 2.26 produces the system of static equilibrium

equations: 2

Γ"f =

[

−"fg

0

]

(2.28)

Where Γ results from stacking the Φ and C matrices:

Γ =

[

I · · · I

C1 · · · Cnc

]

6×3nc

(2.29)

Number of Solutions

The matrix Γ in Equation 2.28. is of dimension 6 × 3nc. Thus for any robot with

more than two legs on the ground, Γ is fat and a nullspace of contact forces exists.

In the tangential (X,Y ) direction this says that the robot can hold up its weight

while squeezing the ground with arbitrary force, as long as these squeezing forces

cancel each other out (Figure 2.6).

A nullspace of forces can also exist in the vertical direction. To analyze this, the

tangential forces in Equation 2.28 are assumed to have known, fixed values. Since fx

and fy are no longer unknowns, Equation 2.20 reduces to the following:

"f = [fz1, . . . , fznc
]T ≡ "fz (2.30)

At the same time, the matrix Γ is affected as follows:

• Each submatrix I loses the first two rows and columns. In other words, the

only force balance that remains is the balance in the z direction, which makes

2Note that Equation 2.28 is a fat linear system, whose Moore-Penrose pseudoinverse is the tra-
ditionally used zero-interaction solution mentioned at the beginning of this chapter.
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sense.

• Each submatrix Ci loses the first two columns because the moments due to fx

and fy have already been accounted for. It also loses the last row, since the

remaining force component fz is unable to apply any moments about the z axis.

After discarding all these rows and columns, the force and moment balance for

the robot reduces to the following:

Γz
"fz =









−fgz

0

0









(2.31)

Where the reduced matrix Γz is now:

Γz =









1 · · · 1

ry1 · · · rync

−rx1 · · · −rxnc









3×nc

(2.32)

The conclusion is that if nc = 3, a nullspace does not exist in the vertical direction

(i.e. a tripod has no vertical nullspace). However if nc > 3, then Γz is fat and a

nullspace exists.

The implications of these nullspaces will be discussed in the following section.

2.4.3 Load Redistribution in Walking Robots

It is now possible to discuss what options exist to redistribute loads between the joints

of a walking robot. As implied in §2.4.1, the first possibility is to transfer torques

from one joint to another within the same leg without modifying the applied load.

This is only possible if m > 6.

The second possibility is to change the load distribution among the legs of the

robot without changing the joint angles or the equilibrium conditions. This is made

possible by the existence of the tangential and normal nullspaces, and can be accom-

plished through the commanded torques. In reality flexible contact points will deform
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as the load changes, causing some changes in geometry. The more rigid the contacts,

the smaller these changes will be.

The third possibility is to change the force distributions by applying small changes

to the joint angles, for example moving one foot up or down so that it pushes more

or less on the ground. This is a more viable way of carrying out force control, and is

usually possible for most walking robots because it relies on cartesian motion of the

foot rather than on direct torque control. The changes in the configuration of the

robot are usually also small in this case.

Because little or no change is made to the configuration of the robot, the previous

three cases are referred to as internal load redistribution. The fourth and final

possibility is to modify the load distribution by displacing the robot’s CG. This

can be accomplished by moving or rotating the body without changing the contact

points of the feet, resulting in simultaneous changes of the loads and the joint angles.

This approach has a bigger impact on the leg Jacobians than internal redistribution

techniques.

Chapter 4 will make use of the 4th approach, while the optimization setup in

Chapter 6 will assume rigid contact points as in the 2nd approach.

2.5 Future Model Improvements

While the spring-mass model presented in this chapter has proven sufficient for this

research, a number of improvements can be made in the future. Some of these are

summarized below.

1. Relaxation of the assumption that all outward normals at the feet are the same.

This would allow more realistic analysis on terrains with bumps. This is a

minor extension which involves additional transformation matrices applied to

the reaction forces when expressing them in the robot frame.

2. A closed-form linear approximation that incorporates spring constants. One

possibility is to write linear approximations to Equations 2.7–2.9. Some thought

has been given to using linear combinations of the 1-norm and the ∞-norm, but
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this has not yet incorporated into the model. Another possibility is to use a

Weighted Least Norm (WLN) solution instead of the standard least norm.

3. A more detailed compliance model of the robot. Although the assumption of

concentrated compliance at the feet has provided enough accuracy for this work,

this might not be true of robots with more flexible limbs or body. The improved

model would incorporate the load-displacement behavior of the different parts

of the robot, which can be obtained by manual calculation in some cases, or

FEM analysis for complex geometries. Zoppi and Molfino [Zoppi 06] have taken

some steps in this direction, but plenty of work remains.

4. Currently the calibration of spring constants is done manually: the robot is

moved through a series of symmetric and asymmetric configurations, and laser

measurements are taken of the tire compressions and height above the ground

of the corners of the chassis. It would be desirable to be able to do this cali-

bration automatically. For this, the height of the corners can be approximately

calculated from knowledge of the body geometry and measurements of height

and tilt obtained with the IMU. Determining the compression of the tires auto-

matically is a more difficult problem. With the sensors currently on the robot,

the only way to estimate this seems to be through computer vision techniques.

This is expected to be reasonably accurate on solid ground like concrete, but

if the ground is deformable a problem arises in differentiating between wheel

sinkage and tire compression, and important distinction particularly on highly

compliant ground with nonlinear force-sinkage behavior. A rough estimate of

spring constants could be made using only the sag of the body. However addi-

tional sensing to measure tire compression directly would probably be needed

for better accuracy.



Chapter 3

Background on Gaits

This chapter describes the related work and other necessary background information.

§3.1 defines the terminology used in the context of gait research.

§3.2 presents the leg numbering conventions.

§3.3 describes the stability metrics applicable to this work.

§3.4 outlines the procedure used to plan and execute individual steps.

§3.5 describes the complete process of gait generation for walking robots.

§3.6 summarizes the most relevant related work.

3.1 Definitions

This section provides some basic definitions related to gait generation that will be

helpful in future discussions.

Gait: A sequence of steps and body shifts that a legged robot executes to achieve

motion. A gait might consist of a repeating pattern, in which case it is known as

a regular or periodic gait. However, non-repeating patterns may be preferable

in some cases, and these are known as free gaits. Finally, it is also possible

to follow a regular gait most of the time and apply changes to it only when

necessary, for example to avoid stepping on a forbidden area. In this case, the

robot is said to be executing an adaptive gait.

47
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Continuous gait: A gait in which body shifts and steps are allowed to take place

simultaneously. As a result the body of the robot is constantly in motion, often

at a constant speed.

Discontinuous gait: In this gait the steps happen when the body is stationary,

and similarly the body is shifted only when all feet are in contact with the

ground. That is, steps and body shifts are not allowed to happen simultaneously,

resulting in a speed that oscillates between zero and some maximum value.

Crawl gait: A discontinuous gait in which only one foot is moved at a time. The

name points at the fact that this gait is very slow and deliberate. Its main

advantage is that it is very safe.

Crab gait: A gait where the body of the robot remains pointed in the same direction

regardless of the actual direction of motion.

Turning gait: In contrast to the crab gait, this gait maintains the body aligned with

the direction of motion. If a curved path is being followed, then the body will be

oriented tangentially to that path at all times. Turning gaits are more difficult

to plan because the legs must be coordinated to provide forward progress as

well as body rotation. It is a better gait if the robot’s sensing is limited to the

forward direction.

Support phase: Period of time during the motion in which a given foot is on the

ground.

Transfer phase: Time period when a given leg is executing a step, and is thus not

in contact with the ground.

Transfer time: Amount of time required to complete the transfer phase of a given

leg.

Leg stroke (R): Distance through which the foot is translated relative to the body

during the support phase (see Figure 3.1).
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Kinematic margin (Km): Distance from the current foot location to the rear of its

reachable space, along the desired direction of motion (See Figure 3.1).

Static stability margin (SSM): Shortest distance of the vertical projection of CG

to the boundaries of support pattern. This and other stability metrics will be

covered in §3.3.

Step: Motion of a leg to place the foot at a new location.

Timestep: Each of the moves that constitute a gait (steps, body shifts, or discrete

waypoints in the execution of these).

Pose: A full robot configuration – xb, yb, zb,φb, θb,ψb plus 36 joint angles.

Body pose: The position and orientation of the body – xb, yb, zb,φb, θb,ψb.

Figure 3.1: Leg stroke and kinematic margin for a legged robot. D is the direction of
motion.

3.2 Leg Numbering Conventions

Traditionally, the numbering of the legs of a walking robot follows the convention

shown in Figure 3.2(a). This convention originated in research that used robots with

elongated bodies and a clearly preferred direction of motion. The odd-numbered
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(b) Circular

Figure 3.2: Leg numbering conventions for walking robots, with direction of motion
indicated by the arrows.

legs are on the left side of the body, and the even-numbered ones on the right side,

assuming motion in the preferred direction.

For robots that don’t have a preferred direction of motion, the above convention

has also been used, but its significance is lost as soon as the robot walks in a direction

other than the one used for numbering. An alternative convention is to number the

legs in a clockwise or counter-clockwise sequence around the body, as shown in Figure

3.2(b). The actual direction is selected to follow the right-hand rule about the vertical

(Ẑ) body axis.

In both cases, the numbering of legs can either start at 0 or 1, more commonly

the latter. Ultimately the selection of a numbering sequence is a matter of choice,

but adjusting to one of these two conventions can be advantageous when relating to

other work in the field, particularly in the context of gait generation.

3.3 Stability Metrics

3.3.1 Static Stability Margin

The Static Stability Margin (SSM) is illustrated in Figure 3.3. The SSM is found

by first constructing the polygon of support (POS), which is the convex hull of the

ground contact points, assuming all the contact points lie on a plane. The SSM is

then the minimum distance of the projection of the CG onto this plane to any of
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SSM

(a) Full Polygon

SSM

(b) Conservative Polygon

Figure 3.3: Polygons of support and the SSM, with 6 feet in ground contact.

the edges of the POS (Figure 3.3(a)). To obtain gaits which are more conservative

in terms of stability it is also possible to use a reduced or conservative polygon of

support. This polygon is the intersection of all support polygons drawn with the feet

in contact minus one, to simulate the failure of one of the supporting legs (Figure

3.3(b)). 1

The SSM is a common stability metric which is easy to compute, and provides a

realistic assessment of stability if dynamic effects do not play a role and the ground

is flat and horizontal.

A variation of this metric, the Longitudinal Stability Margin (LSM) is sometimes

used for faster calculation. The LSM is the distance from the projected CG to the

support polygon along the direction of motion. This simplified metric must be used

with care to ensure that stability is not accidentally violated in the lateral direction.

The study of wave gaits has made extensive use of the LSM, and the work of McGhee

and Frank [McGhee 68b], Bessonov and Umnov [Bessonov 73], Sun [Sun 74], and

Song and Waldron [Song 89] demonstrated that the LSM is in fact maximized by this

type of gait for 2n-legged robots (n > 1).

1In these figures, all feet are assumed to be on the ground, with contact points at the bottom of
the tires.
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3.3.2 Energy Stability Margin

As mentioned above, the SSM is appropriate when walking on horizontal ground but

not when the robot is negotiating a slope. This can be understood by mechanical

energy considerations. In order for the robot to topple over, it must rotate about one

of the edges of the POS. The maximum potential energy is observed when the CG is

directly above the axis of rotation. Therefore a tipping event requires an increase in

potential energy to achieve this maximum value.

If a robot is on a slope with its CG at the center of the support polygon, it can roll

over more easily in the downhill direction because the required change in potential

energy is smaller than in the uphill direction. Thus, a more stable configuration can

be achieved by shifting the CG uphill, away from the “bottom” of the POS. Humans

seem to have an intuitive understanding of this, since it is what we tend to do to

become more stable when walking uphill.

The Energy Stability Margin (ESM), proposed by Messuri and Klein [Messuri 85],

is calculated by the same energy considerations — it is the minimum increase in

potential energy to rotate the robot about any of the edges of the POS is computed.

In order to make the metric independent of robot mass the ESM is usually scaled by

the robot weight as proposed by Hirose et al. [Hirose 01], leading to the Normalized

ESM (NESM). The calculation of the NESM is described in [Hirose 01, Garcia 02],

and is summarized below. The NESM is defined as follows:

NESM = min(∆hi) (3.1)

Here, each ∆hi is the necessary height change of the robot’s CG to tumble about

rotation axis i, and is defined as:

∆hi = hmax,i − h0 (3.2)

= ‖"Ri‖(1 − cos θ) cos γ (3.3)

Where
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hmax,i is the maximum height reached by the CG when the robot rotates

about edge i of the POS.

h0 is the initial height of the CG.

"Ri is the shortest vector from the CG to the rotation axis.

θ is the angle between "Ri and the vertical plane.

γ is the inclination of the rotation axis relative to the horizontal plane.

Let L̂i be the unit vector representing edge i of the POS, defined by the difference

of the locations in {W} of two consecutive feet (i, i + 1):

"Li = "ri+1 − "ri (3.4)

L̂i =
"Li

‖"Li‖
(3.5)

The angle θ between "Ri and the vertical plane that contains L̂i can be calculated

as follows: we first find the unit normal to the vertical plane of interest with Equation

3.6.

n̂i = L̂i ×−Ẑ (3.6)

And then the angle θ with Equation 3.7

θ =
π

2
− arccos

(

"Ri · n̂i

Ri

)

(3.7)

The angle γ between the rotation axis and the horizontal plane is itself determined

by means of Equation 3.8.

γ =
π

2
− arccos

(

−L̂i,Z

)

(3.8)

A contour of NESM for the ATHLETE robot on a 10◦ slope is shown in Figure

3.4. The contour represents the value of NESM as a function of body position. Uphill
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is in the +X direction, toward the right of this image, and the maximum stability

value is achieved by shifting the body uphill.

10◦

Motion

(a) Side View

Xbody (m)

Y bo
dy

 (m
)
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(b) Contour Plot (top view)

Figure 3.4: NESM variation for ATHLETE on a 10◦ slope as a function of body
position. (a)The body can be moved parallel to the ground without moving the feet,
(b)The contour of NESM indicates that stability is maximized by shifting the body
uphill 0.22m (initial position is shown by the red dot, and uphill is to the right).

3.4 Motion Planning of Individual Steps

The sequence of configurations that an individual leg must follow to get the foot

from one point to another during a step is called a motion plan 2. Depending on the

complexity of the leg and the surrounding environment, this can be done following

different approaches.

One approach is to pre-define the trajectory in 3D space that the foot must follow.

Parabolic paths are popular because they are easy to calculate and can be executed

with smooth variations in motor speeds. If the robot is expected to move only in

certain directions, the sequence of configurations for these discrete sets of directions

can be pre-computed and saved as a library that is referenced at run time. This con-

siderably speeds up the process because repeated inverse kinematics (IK) calculations

are only done when building the library.

The above technique is only applicable on planar, unobstructed terrain. If there

exist bumps on the ground or footfall locations to be avoided, steps must be adapted

2More precisely, it is the sequence of intermediate configurations to get the leg from an initial to
a final configuration, or set of joint angles.
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accordingly. Stretching of the original paths in configuration space has been explored

by Hauser [Hauser 08a] and others. An alternative is to plan the motion using a grid-

based or randomized technique that incorporates joint angle limitations, a terrain

model and a robot model to find a feasible plan that prevents collisions with the

environments and other parts of the robot.

For the simulations and experiments presented in this dissertation three approaches

were implemented and compared: a grid-based planner in cartesian space, another

grid-based planner in joint space, and a randomized planner. For both grid-based

cases the well-known A∗ algorithm was used. In the randomized case, the SBL plan-

ner developed by Sánchez and Latombe [Sanchez 01] was used. In all cases, smoothing

was applied to the motion plan via iterative bisection and Dijkstra simplification.

The comparison of motion planning approaches is explained in detail in Appendix

A. As a result of this comparison the SBL technique with smoothing was selected

for use on the ATHLETE robot. A∗ in cartesian space was found to be a suitable

alternative with approximately equal performance.

3.5 General Procedure for Statically-Stable Gait

Design

Walking gaits are in essence sequences of steps and body shifts to be executed by

the robot. This section discusses two cases: first the case of gaits with constantly

repeating motion patterns known as periodic gaits. Second, gaits where the motion

parameters change from cycle to cycle.

3.5.1 Periodic Gaits

On flat, unobstructed terrain no obstacles are encountered and a periodic gait can be

executed. The advantage of regular gaits is that they require limited computation due

to their repeating nature. A structured framework for regular gait specification and

analysis was initially devised by McGhee et al. [McGhee 85a, McGhee 85b]. They

introduced the concept of a gait formula, which consists of a collection of parameters
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that uniquely define a periodic gait. The use of the gait formula is explained in the

books by Song and Waldron [Song 89] and Gonzalez de Santos et al. [de Santos 06].

At a high level, it is necessary to define the sequence and timing of moves to

be executed by the robot for walking. The process begins by deciding between a

continuous or discontinuous gait, as defined in §3.1.

In the continuous case, the body is constantly in motion (usually at a constant

speed). Body shifts need not be specified because of the continuous motion of the

body, but the sequence and timing of steps is necessary. For example, in the simplest

case a possible choice is to step with only one leg at a time, requiring specification of

the step sequence. A popular sequence is the wave, which moves the legs on one side

from back to front, followed by the other side from back to front.

The sequence, however, does not uniquely define a gait – timing information is

also required. Take for example the first two steps of a wave gait: after completing

the first step, one possibility is to initiate the second step immediately. Another

possibility is to continue shifting the body for some time with all feet on the ground

before initiating the second step.

In the context of McGhee’s framework, the sequence and timing are encoded by

two parameters:

Duty factor (βi): The fraction of a gait cycle that leg i is in contact with the ground

(i.e. in the support phase).

Leg phase (φi): The fraction of a gait cycle by which the placement of leg i lags

behind the placement of leg 1. Here leg 1 is the actual physical number of the

leg on the robot, and not the first leg that takes a step. This means that a leg’s

phase may be negative if its placement occurs before that of leg 1, or positive

if it happens after leg 1.

With this in mind, the simplest specification of a gait for a robot or animal with

n legs is given by the gait formula in Equation 3.9. It is possible for all the legs to

have the same duty factor, in which case only one value of β is specified.

g = {β1, . . . , βn,φ1, . . . ,φn} (3.9)
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For example, if a walking robot like the one in Figure 3.2(b) executes the sequence

of steps {6-5-4-1-2-3} (a reverse wave sequence), with one step at a time, and each

step starting immediately after the previous one ends, the gait is defined by Equation

3.10. Note that all feet spend the same amount of time in the support phase.

gRW = {β = 5
6 ,φ1...6 = 0, 1

6 ,
1
3 ,−

1
6 ,−

1
3 ,−

1
2} (3.10)

Because βi and φi are dimensionless fractions of the time it takes to execute a

full gait cycle, the speed at which the robot moves can be specified independently,

without any change to the gait formula.

Note that Equation 3.9 specifies only the “big picture” of a gait. It says nothing

about the length of the individual steps, the selection of footfall locations, or the path

followed by the foot when executing a step. A more detailed gait specification was

created by McGhee et al. to include the initial and final position of each foot relative

to the body, in addition to the values of βi and φi. This is known as the kinematic

gait formula, and is also explained in [Song 89].

For ATHLETE a discontinuous gait has been selected, due to its ease of im-

plementation that requires less sophisticated coordination during stepping. This is a

common choice for walking robots. In the discontinuous gait, the steps are executed

with the body stationary, and conversely the body is shifted with all feet on the

ground. A reverse wave sequence has been chosen, in which the placement of the feet

runs from front to rear, with the left side being 180◦ out of phase with respect to the

right side. The reverse wave sequence was selected because it maximizes the distance

between consecutive feet, preventing situations like the one shown in Figure 3.5.

Discontinuous gaits can also be specified via the gait formula, but now the length

and direction of body shifts must be specified too. It is possible to make certain

assumptions, such as equal-length body shifts in the direction of motion, in which

case the length σ of each body shift for a legged robot with n legs is specified by

Equation 3.11 once the robot has settled into a regular gait.

σ =
λ

n
(3.11)
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Figure 3.5: Risky positions prevented by the reverse wave gait.

Where λ is the robot’s stride, i.e. the distance that the body advances after a

complete gait cycle.

3.5.2 Non-periodic Gaits

In the previous section a general procedure for periodic gait design was provided.

In many situations these repeating motion patterns are not appropriate primarily

because of forbidden areas in the environment where the robot may not step (e.g.

rocks, crevices).

In this case it is not possible to provide a general procedure for gait design,

because the best approach depends on the specific conditions that the robot will face.

The extensive body of literature on adaptive and free gaits covers many techniques

for cases where periodic gaits are inadequate, for example when crossing a boulder

field. Figure 3.6 shows a simulation of a hexapod crossing a field with fairly dense

boulder distribution. A periodic gait was found to result in collisions between the feet

and a number of obstacles. A simple adaptation consisting of shortening the steps

when a collision is foreseen resulted in successful traversal of the boulder field. This

means that non-periodic gaits need not be too complex – they can be constructed by

following a periodic gait most of the time, with local adaptations only when necessary.
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Figure 3.6: Traversal of a boulder field usually requires an adaptive or free gait.

As the terrain becomes more complex, so does the gait design process. For very un-

structured terrain, the challenge often becomes one of feasibility because valid motions

are difficult to find. General motion planning approaches for this kind of situation

have been developed for walking and climbing robots by Bretl [Bretl 05, Bretl 06] and

Hauser et. al. [Hauser 08a, Hauser 08b], and have been validated experimentally on

the Lemur and Capuchin robots, and in simulation for the ATHLETE robot. These

planners search for feasible motions directly in the 42-dimensional configuration space

of the robot, and as a result carry a high computational cost. However, their ability

to find viable motion plans in highly constrained situations makes them suitable for

extreme terrains.

3.5.3 The Skeleton Gait

Whether a periodic or non-periodic gait is selected, it is convenient to decompose the

process in two parts:

Skeleton Gait: This consists of the sequence of robot configurations without the

details on how each individual step is executed.
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Step Planning: From the skeleton gait the information on the initial and final con-

figuration of the leg during a step can be obtained. A motion planner is then

applied to determine the sequence of waypoints that individual legs must follow

to complete a step, as previously described in §3.4.

The above breakdown is advantageous because the optimization can be applied

to the skeleton gait directly. Note that, since the robot poses may be modified by the

gait optimizer, existing step plans would need to be discarded to take into account

the new start and end leg configurations.

3.6 Gait Optimization and Related Work

The focus of this dissertation is on optimal gaits for slowly-moving, statically-stable

walking robots. The main thrust of research on legged robots has shifted in recent

years to dynamically-stable walking or running. In that context new control tech-

niques have been developed that are capable of dealing with very challenging terrains

(e.g. BigDog [Playter 06] and SandBot [Li 09]), take advantage of the dynamics in-

troduced by robot compliance [Silva 03], and propel the robot at higher speeds.

However, this body of work relies on actuation capabilities with high mechanical

power (e.g. hydraulics, artificial muscles) to accomplish locomotion. While impres-

sive, the inherent assumptions of these approaches make them unsuited for robots

with weak actuators, which are the ones most prone to saturation. Using powerful

actuators is not always possible due to various limitations like mass, electrical power

and even cost. The remaining exploration of related work focuses on gait generation

under quasi-static assumptions with weak actuators.

3.6.1 Actuator Limitations in Walking Robots

The focus of gait optimization involving joint torques has been on energy efficiency,

without emphasis on distance to saturation. The motivation is clear and reason-

able: legged robots require electrical power to move, and this power must be carried
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aboard in the form of batteries or obtained from alternative sources such as solar pan-

els. Because the system must be ideally self-contained (i.e. no long extension cords

required), a reduction in power consumption will increase the range or autonomy of

the robot. Therefore, the majority of papers describing torque-related optimization

focus on minimization of power.

The motivation for improving actuation margin instead is one of feasibility and

robustness. Legged robots intended for cargo or scientific applications can, by design,

be required to operate close to saturation. Therefore adequate gaits are needed to

maximize the useful payload and guarantee continuous motion. The reader is asked

to keep this distinction in mind through the remainder of this dissertation.

Having said this, energy minimization approaches deal with functions of the joint

torques, and contain lessons that can be incorporated when dealing with gaits for

preventing saturation.

The cost metrics commonly used are functions of the joint torques and angular

velocities – J1(τ θ̇) (for minimization of mechanical power), or of the square of the

torques – J2(τ 2) (for minimization of electrical power).3 These are referred to as type

J1 and type J2 functions in the discussion that follows.

OPTIMIZATION WITH ACTUATION MARGINS

The idea of achieving a comfortable margin away from saturation has been partially

addressed in the literature through the use of safety margins. For example, Kerr and

Roth [Kerr 86] applied safety margins to the friction and joint torque constraints of

a LP force optimization, in the context of fingered grasps. Their work develops a

general LP framework for finding optimal force distributions through minimization

of various possible cost functions, subject to linear constraints. One such possibility,

which they apply to grasping, is to minimize a linear combination of torque ratios

and friction cone margins. The selection of appropriate weights for each component

3The mechanical power for a rotating motor is defined as Pm = τ θ̇. On the other hand, the
electrical power for a motor can be expressed in its simplest form as Pe = I2R, and the motor stall
torque is given by τ = KtI, where I is the current, R the resistance, and Kt the motor torque
constant. Combining these expressions, the electrical power can be rewritten as Pe = R

K2
t

τ2.
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of the cost function is not discussed.

As compared to the work of Kerr and Roth, joint torques in our case are affected

by body motion as well as optimal force distribution. This makes it applicable to a

wider spectrum of robots, with or without active force control capabilities.

The use of fixed safety margins has also been applied to torque constraints. Fixed

margins of safety can decrease the robot’s susceptibility to saturation, but their ade-

quate selection is far from easy. This is especially true for a robot operating near the

upper or lower bounds of the torque regime. In the first case, one risks selecting a

margin that is too small. In the second case, requiring an overly large margin might

render the optimization infeasible, while realistically there is a solution. In this con-

text, the work presented in this dissertation can be understood as a maximization of

safety margin at different stages of the gait.

POSE-BY-POSE ENERGY OPTIMIZATION

Most of the literature involving torques has focused on energy efficiency through

minimization of appropriate cost metrics. The most common approach is to select

foot force distributions that minimize energy consumption or mechanical power for

particular gaits.

Some force-based approaches specifically geared toward walking robots choose to

optimize the force distribution at individual fixed poses throughout the gait. For ex-

ample, Cheng and Orin [Cheng 91] developed a fast Linear-Programming technique

for optimization of force distribution for general multiple-chain robots, with applica-

tion to a variety of grasping tasks. The technique is shown to work for different linear

cost functions. Of special interest is their optimization for minimum effort, defined by

a summation of normal force components at the contact points. This cost function is

not of type J1 or J2, but like them lacks the explicit distancing from saturation. The

LP approach naturally arises as the appropriate solution technique in the second part

of this dissertation, for the case of robots with force control capabilities. However, it

is not applicable when the joint torques are nonlinear functions of the optimization

variables, as in the first half of this work.
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Marhefka and Orin [Marhefka 98] used a different setup based on quadratic pro-

gramming to achieve the same objective on walking machines, with specific focus on

reducing the energy used by the motors. Quadratic programming is mandated by the

use of a J2 cost function. Their work incorporates constraints on joint torques based

on current and voltage limitations of the motors and associated circuitry. However,

no attempt to maximize actuation headroom is made.

The work presented in this dissertation follows the pose-by-pose philosophy of the

above approaches but differs from them in that the torque redistribution is achieved by

lateral, longitudinal and rotational body motion as opposed to internal redistribution

with a fixed pose.

ENERGY OPTIMIZATION THROUGH GAIT PARAMETERS

In contrast, other force-based approaches aim to minimize energy consumption by

manipulating some of the gait parameters (duty cycle, body height, step length,

etc). These are applicable only to regular gaits, for which it is possible to quantify

energy consumption per cycle for comparison purposes. For example Marhefka and

Orin [Marhefka 97] applied a dynamic simulation technique to select optimal gait

parameters of a generic hexapod robot. The authors report energy reductions of up

to 50% after modifying the initial gait parameters.

Silva, Machado and Lopes [Silva 06] analyzed the energy efficiency of periodic gaits

for quadruped robots as a function of robot velocity. Their focus is on adjusting gait

parameters to minimize mean absolute energy density and hip trajectory tracking

error. The energy metric is of type J1, and thus for a given robot velocity would

potentially reduce joint torques. This approach is not applicable to discontinuous

gaits where the robot does not move at constant speed. It also does not take advantage

of swaying motion. Similarly Sufi-Erden and Leblebicioğlu [Erden 06] optimized gait

parameters for a wave gait in order to minimize a dissipation function of type J2.

Their approach achieves energy reductions via the modification of gait parameters,

and they conclude that the ipsilateral 4 phase difference of the standard wave gait

must be modified in order to reduce energy dissipation.

4ipsilateral: same side of the body
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BIO-INSPIRED APPROACHES

In the realm of bio-inspired approaches, Kar, Issac and Jayarajan [Kar 01] based their

technique on biomechanical studies of cockroaches, which suggest that directing the

contact forces toward the coxal (hip) joint minimizes joint torques in these insects.

The objective to be minimized is the power consumption, but torque limits are not

considered. As will be explained later in this dissertation, directing the forces toward

the hip can drive some joints closer to saturation, exacerbating the problem being

addressed in this dissertation.

Several approaches are based on the use of Central Pattern Generators (CPG).

For example, Tsujita, Kawakami and Tsuchiya [Tsujita 04] used simulated annealing

to choose appropriate phase differences between CPG oscillators in order to minimize

a function of type J2. Unfortunately this family of techniques assumes very specific

de-centralized robot architectures not available in many robots.

DIRECT OPTIMIZATION OF TORQUES

More recently a few approaches have been published that work directly with joint

torques instead of forces. Jiang, Liu and Howard [Jiang 04] compared force-based and

torque-based approaches, using different pseudo-inverse formulations to determine

optimal force distributions between the supporting feet to apply a desired force/torque

on the body. The torque-based approach was found to present optimality benefits as

measured by the sum of the torques squared.

Similarly, Sufi-Erden and Leblebicioğlu [Erden 07] undertook an energy formula-

tion using joint torques directly, and compared it with the more common foot force

distribution setup. The objective was to minimize Power=J(τ 2) subject to friction

constraints for some given, pre-defined gait by redistributing torques among the joints.

Their comparison suggests that an optimization based on joint torques directly results

in more energy-efficient motions than one dealing with force distributions. For exam-

ple, a comparison of a full cycle of an alternating tripod gait results in a gait that is

almost twice as efficient using the torque approach. One drawback of their approach,

however, is that it makes no attempt to avoid motor saturation. In other words,
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power minimization does not necessarily imply reducing proximity to saturation.

The above two approaches make use of the fact that it is possible to redistribute

torques among the joints of a robotic leg without affecting the force distribution, if

sufficient joints are available and rigid contact points are assumed. Therefore bet-

ter solutions might be found by working directly in the torque domain rather than

indirectly through forces.

Gonzalez de Santos et al. [de Santos 05, de Santos 06] included joint torques and

electrical power consumption as part of a new stability metric – the global quasi-

static stability margin (GSSM), which groups the geometric, torque and electrical

current stability margins. The GSSM was then used to select optimal footholds

in a free crab gait for quadrupeds and hexapods. As with other approaches that

involve weighted combinations of cost, selection of these weights is critical. Also,

use of electrical current as an optimization metric is difficult, requiring a sufficiently

accurate model of the robot’s electrical system in order to be trustworthy. Their work

makes extensive use of normalized margins with possible values in the range [0, 1], a

philosophy adopted in this dissertation because it provides consistent scaling for cost

functions in an optimization setting.

CLIMBING ROBOTS

Some related work also exists in the climbing robots literature. Of note is the work

by Miller, Bretl and Rock [Miller 06] on torque redistribution via real-time convex

optimization. Here, an optimal distribution of contact forces is found by solving a

LP, subject to constraints on the joint torques. The cost function is the weighted sum

of torque ratios, and the contact forces are controlled directly via the individual joint

torques. As previously mentioned, the second part of this work makes use of a similar

optimization setup, but with a different emphasis: maximizing actuation headroom.
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SWAY COMPENSATION

None of the above approaches tried to exploit lateral motion or other deviations from

a nominal trajectory to reduce torques. To the author’s knowledge the only prece-

dent of this is the work of Kurazume et al. [Kurazume 03] on energy efficiency of a

quadruped robot. Though not directly dealing with torques, their work introduces

2D and 3D sway compensation for the purpose of smoothing out accelerations dur-

ing dynamically-stable gaits of a quadruped robot (Titan VIII). The authors report

reductions in energy consumption (Joules per gait cycle) as compared to a dynamic

trot without swaying.

It should be noted that evaluation of robot performance has been traditionally

carried out under the assumption of hip trajectories executed at constant velocity.

However, as suggested by Silva and Machado [Silva 07], and Alexander [Alexander 84,

Alexander 89], hip oscillation is present in animals potentially due to efficiency ben-

efits, and its application in walking machines merits further study.



Chapter 4

Zero-Interaction Gait Optimization

This chapter describes the new optimization procedure that was developed to prevent

actuator saturation in walking robots, without making use of the nullspace of forces.

The technique finds optimal changes to the body’s spatial DOF to alter the force

distribution and leg geometry in a way that reduces proximity to saturation. The

chapter is organized as follows:

§4.1 gives some opening remarks.

§4.2 provides a high-level outline of the approach.

§4.3 discusses selection of optimization variables.

§4.4 formalizes the optimization framework.

§4.5 presents simulation results for individual poses and complete gaits.

§4.6 discusses how the granularity of the optimization can be increased.

§4.7 gives a summary of findings and motivates a sensitivity analysis.

4.1 Introduction

Various approaches are possible for gait optimization, depending on the intended

objective and available capabilities of the robot. In this work the choice is made to

optimize the gait one pose at a time.

This chapter describes the first of the two approaches developed over the course

of this research. Its essence is to seek a zero-interaction solution, taking advantage of

modifications to the spatial DOF of the robot’s body. The technique does not make

67
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use of the nullspace of contact forces. The zero-interaction approach is the safest

one in situations where the contact friction coefficients and/or mechanical properties

are not well known. The utilization of the null space will be discussed in detail in

Chapter 6.

If precise force control is available, the full benefit of the zero-interaction optimized

gait can be obtained. In the absence of it, there are limitations on the kind of terrain

that can be traversed. The characteristics of the traversable ground will be studied

in Chapter 5.

4.2 Outline of Approach

Due to the wide variety of gaits that legged robots may follow in specific situations, the

technique presented here is designed to modify an existing gait rather than construct

one from scratch. The process begins with the generation of this reference gait. A

vast literature exists on different approaches to gait generation for specific needs,

and a good overview is presented in [de Santos 06]. The optimization is applicable

to any statically-stable, discontinuous gait regardless of the number of legs that step

simultaneously (applicability to continuous gaits is discussed in Chapter 8).

The reference gait provides a sequence of poses and footfall locations followed by

the robot. Of the reference gait, the footfall locations will be preserved intact, but

the poses will be modified. Preserving the footfall locations is important in the case

of environments with forbidden areas, such as boulder fields.

The modification of poses can be applied at any desired level of granularity. For

example, during the execution of a step the CG of the robot shifts as the leg is

swung forward. A high-granularity approach would optimize the body pose for many

intermediate waypoints of the step, resulting in a continuous displacement of the body

as the step is executed. It is useful, however, to realize that the peak loads on the legs

and joints generally occur during the execution of steps, when one or more feet are

in the air. For this reason, a low-granularity approach is followed in the remainder

of this work, finding ideal body poses before each step is executed such that when

the corresponding foot is picked up the maximum observed torque ratio is as low as
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possible. A discussion on how to increase the optimization granularity is provided in

§4.6.

After applying the optimization to individual steps along the gait, consecutive

optimized poses can be connected by straight line body motions that constitute the

new body shifts.

In order to avoid unnecessary computations the optimization is applied to the

skeleton gait. That is, the gait that contains all the footfall locations and body shifts,

but for which the individual steps haven’t been planned in detail using SBL or any

other motion planner (see §3.5). The reason is that the swaying motion applied by

this optimization changes the configuration of the robot and its position relative to the

ground and obstacles, which would require individual steps to be replanned anyway

in order to prevent collisions.

The following example further clarifies the zero-interaction optimization process.

Figure 4.1(a) shows the top view of a robot about to step with leg 6 (top right). The

contour plot shows the variation of τ
%,max over all the joints of the legs in contact as a

function of the body position (xb, yb). The center of the body is indicated by the green

dot, and starts at (0, 0). If no optimization is applied the step would be executed

from this original pose. However, as the contour plot shows, the maximum torque

ratio can be reduced if the center of the body is shifted to the position indicated as

(xb, yb)∗ before executing the step, as shown in Figure 4.1(b).

The procedure shown in the previous figure is applied to each of the steps along

the desired traverse, resulting in a sequence of optimal poses for the execution of

the steps. The motion of the body needed to connect two consecutive optimal poses

constitutes the new body shift between steps, as shown in Figure 4.2.

Note that the precise shape of the τ
%,max contour depends on the force distribution

and the geometry of the legs. These change every time the robot moves, so the optimal

offsets (∆xb,∆yb)∗ must be found by an optimization for each step. This is explained

in the rest of this chapter.

The optimal body pose is generally not located at the centroid of the support

polygon. The reason is that the value of torque depends on the load distribution

as well as the geometry of the legs. Thus even though centering the CG inside the
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(a) Before body shift (b) After body shift

Figure 4.1: Contours of τ
%,max for the first step of a gait. To move away from saturation,

the body is shifted to (xb, yb)∗ before executing the step.

support polygon would result in an even distribution of forces, the geometry of each

of the legs will in general be different, producing different sets of torques.

4.3 Optimization Variables

The body of a walking robot has 6 spatial degrees of freedom (DOF). It is possible

to harness as many of these DOF as appropriate to prevent saturation.

If the robot is transporting inert cargo, variations in chassis tilt and height might

be acceptable. In this case it would be acceptable to exploit all six DOF and use

(∆xb,∆yb,∆zb,∆φb,∆θb,∆ψb) as the design variables. On the other hand manned

applications may require maintaining a steadier platform, in which case it would be

more appropriate to use (∆xb,∆yb,∆ψb), or perhaps only (∆xb,∆yb) as optimization

variables while maintaining the other DOF constant.

If lateral motion is deemed undesirable for reasons of crew comfort or traversal

of a narrow passage, a benefit can still be obtained from an optimization on ∆xb

only. The result is a gait whose body shift lengths are adjusted to decrease torque

requirements. This will be illustrated in §4.5 when simulation results are presented.
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(b) 2nd optimal pose

Figure 4.2: Connection of two consecutive optimal poses results in the new body shift
for the swaying gait

Regarding the use of ∆zb, the height of the body above the ground has a direct

impact on a leg’s reachable area. A larger reach can allow bigger (∆xb,∆yb) body

shifts which may reduce torques further. Therefore for a given start configuration

and target footfall there is an optimal body height or range of heights that enable

larger torque reductions. A gait that includes optimization over ∆zb would present

cyclical variations of body height as the robot walks.

The present work was carried out in the context of a manned robot, so it has been

deemed desirable to keep (zb,φb, θb) constant for crew comfort, and take advantage

of (∆xb,∆yb,∆ψb) for optimization. The approach, however, is valid in the general

case of using all the body DOF subject to appropriate constraints.

It is noted that the benefit obtained from the rotational degrees of freedom can

be expected to be comparatively small. This is primarily because they do not shift

the CM of the robot considerably if at all, so the force distribution sees little change.

The benefit of these DOF comes from the modification of the leg geometries and the

different set of moment arms that result. In some cases they also extend the body

translations that are possible, enabling a greater benefit from (∆xb,∆yb,∆zb).

The achievable reduction in τ
%,max for a given step largely depends on the geometry

of the legs in contact and how much motion of the body they allow. For example,

Figure 4.3 shows a very constrained pose for the ATHLETE robot, informally called
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(a) ATHLETE in MSP pose
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Figure 4.3: A very constrained configuration for a legged robot can prevent motion
in a direction of interest and limit the possible reduction in τ

%,max.

the Marsyard Standard Pose (MSP). In this example, four of the legs are tucked in

to narrow the form factor of the robot so that it can be stored in a reduced space.

Because these legs are close to some of their joint limits, displacement is limited along

the X direction (left-right here) and the minimum torque achievable is pegged at the

extreme of motion. Had the joint angle limits been less constrained, it might have

been possible to move further from saturation.

The above discussion suggests the interesting possibility that one might exploit

the multiple inverse kinematic (IK) solutions that exist for a 6-jointed leg to reach the

same point in space. By selecting a different IK solution for some of the legs it might

be possible to shift the body further in a beneficial direction. Generally speaking

these multiple IK solutions are not connected in configuration space; in other words,

except in special cases it is not possible to take the leg from one IK solution to

another without moving the foot or hip. Therefore, a sequence of body moves might

be necessary to achieve this extra benefit. The utilization of IK multiplicity was not

explored in this work.
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4.4 Optimization Framework

To begin, the torque ratio for joint i is defined as follows, assuming that the maximum

available torque is the same in the positive and negative directions:

τ
%,i =

∣

∣

∣

∣

τi

τmax,i

∣

∣

∣

∣

(4.1)

The torque ratio represents the percentage of maximum torque capacity being

requested from a certain joint. By extension, the actuation margin for the same joint

is defined as follows:

Mτ,i = 1 − τ
%,i (4.2)

The actuation margin is a metric of how far from saturation a given joint is. A

value of τ
%,i ≥ 1, or equivalently Mτ,i ≤ 0 denotes a saturated motor. Since the

objective is to maximize the actuation margin for all joints the cost function to be

minimized is the following:

J = ‖τ
%,1, . . . , τ%,n‖∞ (4.3)

That is, cost is represented by the maximum of all torque ratios. The problem

has a form similar to the Chebyshev approximate solution of a linear system, which

can be stated as follows [Boyd 04]:

Minimize maxi=1...k

∣

∣aT
i x − bi

∣

∣ (4.4)

Where aT
i ∈ +n, x ∈ +n and bi ∈ +. The Chebyshev solution is very similar

to least-squares – they both provide approximate solutions to the equation Ax = b,

by minimizing different quantities. In the Chebyshev case the cost function is not

differentiable (i.e. it is non-smooth). Therefore instead of attempting to solve it in

the form shown by Equation 4.4 it is usually transformed into an equivalent linear

program (LP), for which solution techniques abound.

The cost function from Equation 4.3 is structurally similar to Equation 4.4. In
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both cases the non-differentiable infinity-norm is present. Unfortunately in Equation

4.3 the argument is nonlinear and non-convex, so LP does not apply. However the

transformation process applied to the Chebyshev problem to convert it into a LP can

and will be rescued here to obtain cost function smoothness.

The issue of non-linearity can be addressed by use of a nonlinear programming

technique (e.g. Sequential Quadratic Programming). Finally, the cost function is

non-convex, meaning that it has multiple local minima. Local optimizers can become

trapped in these, complicating the successful discovery of the global minimum. To

investigate how this affects the problem at hand, exhaustive searches have been con-

ducted on Equation 4.3 for a variety of robot poses. These searches revealed a benign

nature with a strong local minimum near the starting pose (Figure 4.4). Therefore,

by providing the optimizer with an initial guess corresponding to the starting pose,

convergence to the global minimum was achieved in all the cases that were studied.



CHAPTER 4. ZERO-INTERACTION GAIT OPTIMIZATION 75

X

Y

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) 1st Step

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) 2nd Step

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) 3rd Step

X

Y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) 4th Step

X

Y

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(e) 5th Step
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Figure 4.4: Contours of τ
%,max for the first 6 steps of a gait. Note the presence of one

strong local minimum in all cases, indicated by the green dots.
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With the above discussion in mind, the original problem will be transformed into

a smooth, differentiable one which can be solved by means of SQP. This is accom-

plished with the following equivalent problem:

Minimize:

J = t; t: scalar (4.5)

Given the design vector:

X = {∆xb,∆yb,∆zb,∆φb,∆θb,∆ψb, t} (4.6)

s.t.:

t ≤ 1 (4.7)

τ
%,1 ≤ t

... (4.8)

τ
%,n ≤ t

The cost is now a linear function of the design variables, but joint torques τi

remain nonlinear functions of (xb, yb, zb,φb, θb,ψb). Thus the overall problem consists

of a linear cost function subject to nonlinear constraints.

The optimization is also subject to reachability constraints. Given an initial set

of contact points expressed in the robot frame {R}, the new position of each contact

point after a body translation and rotation is obtained by applying the transformation

matrix in Equation 4.9. The points on the ground will experience a motion opposite
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to that of the body, as seen in the {R} frame. 1 , 2

T =













cΘcΨ sΦsΘcΨ + cΦsΨ −cΦsΘcΨ + sΦsΨ −∆xb

−cΘsΨ −sΦsΘsΨ + cΦcΨ cΦsΘsΨ + sΦcΨ −∆yb

sΘ −cΦsΘ cΦcΘ −∆zb

0 0 0 1













(4.9)

If the optimization variables are (∆xb,∆yb,∆ψb) this becomes:

T =













cΨ sΨ 0 −∆xb

−sΨ cΨ 0 −∆yb

0 0 1 0

0 0 0 1













(4.10)

Defining the maximum reach for all legs ρmax,i, and using the transformation

matrix T , the reachability constraints can be written as follows:

‖"rL,i − T · "rT
c,i‖ ≤ ρmax,i (4.11)

Where:

"rL,i: Location of {L}i expressed in {R}.
"rc,i: Initial location of contact point i in {R}.

This is illustrated in Figure 4.5. The points A and B in this figure denote the

initial and final foot locations of the leg that takes a step. The remaining static

footholds as well as A,B must remain within the reachable area of the appropriate

leg (exemplified by the dashed pie wedge).

Equation (4.11) is nonlinear and non-convex due to the presence of trigonometric

functions of ∆ψb. Summarizing, the properties of the optimization constraints place

the problem in the realm of nonlinear optimization. Various techniques exist for solv-

ing this optimization problem, and for this work Sequential Quadratic Programming

1In the interest of readability, s represents the sin() function, and c the cos() function. Similarly,
the angular displacements are expressed in short form, with the following equivalence: ∆φb → Φ,
∆θb → Θ, ∆ψb → Ψ .

2The expression has been simplified by recalling that for any angle ζ it holds that
sin(−ζ) = − sin(ζ) and cos(−ζ) = cos(ζ). The original expression can be found in [Craig 89], p46.
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A

BX

Y

(a) Original pose

A

BX

Y∆x
∆y

∆ψ

(b) Pose after translation, rota-
tion

Figure 4.5: Reachability constraints for an optimized pose.

(SQP) was chosen. Specifically a C++ implementation called SNOPT [Gill 02] is

used. The SQP algorithm is described in [Nash 96] and others.

At this point the optimization problem is fully defined. Once the set of opti-

mization variables is chosen, the problem can be solved using the technique described

above. The following section describes simulation results for a reverse-wave gait being

executed by the ATHLETE robot.

4.5 Simulation Results

4.5.1 Description of Experiments

The simulations begin with ATHLETE in the preferred driving configuration on flat,

horizontal ground as shown in Figure 4.6. This pose is symmetric, with all the legs in

the same configuration, and the top of the body 2m above the ground. In the image,

leg 1 is indicated by the red dot. The robot is commanded to walk 5m out face 1 (see

Figure 2.5), which is toward the right in this case.

The resulting motion and torque variation is studied for two cases: the reference

gait without any optimization, and the gait optimized with (∆xb,∆yb,∆ψb). This

subset of design variables was chosen for the ATHLETE robot because it preserves

the body height and roll/pitch angles, providing a stable platform for manned appli-

cations.
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Figure 4.6: Starting pose and terrain for the gait optimization simulations.

4.5.2 Simulator Description

For the purpose of gait analysis and design, a simulation environment called GaitView

was developed. The simulator and its supporting libraries were written in C++. The

main features that were incorporated into the simulator include:

• Realistic 3D visualization of the robot and its motion, with image capture ca-

pabilities.

• Ability to load multiple terrain meshes simultaneously.

• Calculation and visualization of contact forces and joint torques.

• Ability to load and replay telemetry logs from ATHLETE field tests.

• Gait planning and execution.

Figure 4.7 provides two screenshots of GaitView. The user interface was imple-

mented using QT4 [Nokia 09]. This provides a large number of pre-designed widgets

which make it easy to extend the interface if new capabilities are required, as was the

case many times throughout this research.

Interactive 3D visualization was achieved with OpenGL, via the QGLViewer li-

brary [Debunne. 09]. QGLViewer enables very intuitive interaction with the 3D mod-

els, including rotation, translation, zoom in/out, fly in/out, redefinition of the center

of rotation, image capture, and many others. The library also interfaces easily with
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QT, requiring only that the user redefine the draw() function to render the models

via OpenGL commands.

Some of the drawing functionality in GaitView was inherited from a previous sim-

ulator developed by Kris Hauser and other members of Prof. Jean Claude Latombe’s

research group at Stanford University. Their group also kindly provided the SBL

library which was used for individual step planning.

Collision checking is accomplished via the Proximity Query Package (PQP), devel-

oped at the University of North Carolina [UNC 99, Gottschalk 96, Larsen 99]. PQP

is used to check for self-collisions and collisions with the environment.

Dynamic simulation capabilities are currently not available in GaitView, but could

be added in future versions via the Open Dynamics Engine (ODE) [Smith 07].

(a) Force/torque analysis

(b) Telemetry analysis

Figure 4.7: Two screenshots of GaitView 1.0.
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4.5.3 Unoptimized Reference Gait

A discontinuous, reverse wave gait was chosen as a reference for the work with ATH-

LETE because it maximizes the distance between consecutive feet, which is useful for

avoiding self-collisions. However, as mentioned before, the technique presented here

is not dependent on the use of this specific gait.

The preferred directions of motion for ATHLETE are toward any of the 6 faces

of the hexagonal body, because stereo cameras are available looking directly out of

each face. The simulation results presented in this section correspond to a motion in

the direction of Face 1, as shown in Figure 4.8. For this gait and direction of motion,

the sequence of steps is {6-5-4-1-2-3}, with a body shift after each step. The total

displacement of the body is 5m, which results in a total of 34 steps (5 complete gait

cycles plus 4 extra steps).

Figure 4.9 shows the first 2 gait cycles of the reverse wave gait. Each blue dot

represents the position of the center of the body after a body shift. The steps are

indicated by curved, solid arrows, and the body shifts by straight, dashed arrows.

After the second gait cycle, the motion converges to a regular, periodic pattern. At

this point all the body shifts are of equal length, and so are the steps.

1
2

3

4
5

6
Motion

Figure 4.8: Step sequence of a reverse wave gait
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Start

Figure 4.9: First 2 cycles of a reverse wave gait
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VARIATION OF τ
%,max

In order to establish a point of comparison for the subsequent optimizations the

variation of τ
%,max throughout the reference gait is analyzed here. A special shorthand

notation has been devised to clarify what move each data point corresponds to in the

plots of τ
%,max. This notation is summarized in the following Table:

Symbol Meaning

↑ # Lifting of foot #

→ Forward swing of the lifted foot

↓ Planting of the lifted foot

↔ Body shift

Table 4.1: Shorthand notation to indicate moves in plots of τ
%,max

Figure 4.10 shows this variation for the first 3m of the traverse. This includes a

total of 3.5 gait cycles, for a total of 21 steps and an equal number of body shifts.

Starting from the third cycle the behavior becomes regular, so the remaining 2m of

the traverse are not shown to improve readability.

The following observations can be made about the behavior observed in Figure

4.10 for each of the first three cycles:

First cycle: First it is evident that the peaks correspond to the instances when

a foot is in the air. A relatively small variation is observed between the two

points of each peak ( 10% in the worst case). This variation is a result of the CM

being shifted during the swing since the legs have significant mass. Second,

a gradual increase exists from the 1st to the 5th peak. This curious behavior

can be attributed to the fact that as the first cycle progresses the spread of

the two legs adjacent to the one in motion also increases (verifiable by carefully

observing the first 5 steps in Figure 4.9). By the 6th all the feet in contact

have taken a step, and the configuration is again more symmetric, causing the

observed decrease.

Second cycle: Starting from this cycle the pattern changes and exhibits two high
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Figure 4.10: Variation of τ
%,max for the reference gait

peaks followed by a low one – a kind of symmetry between the left and right

sides of the body. The critical steps are the first and second ones on each side.

Third+ cycle: Since the chosen gait is periodic, the variation of maximum torque

ratio repeats exactly from the third cycle on. For verification the first 3 steps

of the third and fourth cycles may be compared.

4.5.4 Full Gait Optimization Using (∆xb,∆yb,∆ψb)

It is now possible to apply the above optimization to each pose along the reference

gait studied in §4.5.3. The optimization is applied to this skeleton reverse-wave gait.

As mentioned the poses can be optimized at any level of granularity desired. Here

the choice has been made to optimize only the steps. During the execution of a

step the torque ratios constantly change because the location of the CG moves as

the leg is swept forward, modifying the load distribution among the legs that remain

in contact. The percentage torque variation between the lift and drop waypoints,

however, is small enough that it was deemed sufficient to optimize the body pose
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only at the beginning of each step, when the leg has reached its lift waypoint qL

(Figure 4.11). Therefore the body will be shifted to its optimal pose before initiating

a step, and will remain there during the entire motion of the stepping leg.

As the results will show, this approach achieves the desired reductions in torque

percentages while preventing too much computation. A discussion on how to increase

the level of granularity is provided in §4.6.

1

2

3

qI

qLqD

qG

Figure 4.11: Stages in the execution of a step – 1© Lift, 2© Collision-free planned move,
3© Drop. The waypoints of interest are qI : Initial configuration, qL: Lift waypoint, qD:
Drop waypoint, qG: Goal configuration.

OPTIMIZED MOTION

Figure 4.12 shows a comparison of the optimized and reference motions of the robot.

Each blue point along the path represents the location of the center of the chassis at

the beginning or end of a body shift. The first of these points is the initial location

of the body. The line segments connecting these points correspond to the body shifts

themselves. In the reference case, each point also corresponds to a step taken with

the corresponding leg in the sequence, since steps are executed at the end of each

shift. This is also true for the optimized motion, with the exception of the first point,

because in this case the robot executes a body shift before executing a step.

As can be seen in the figure, the swaying motion becomes periodic after three gait

cycles. This is expected since the reference gait is also periodic. Here the underlying

behavior is easier to understand – once the gait becomes periodic near the end of
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Figure 4.12: Comparison of optimized (top) and reference gaits for the ATHLETE
robot.

the 2nd cycle the body is moved away from the stepping side. That is, before the

legs on the left side of the body take steps, a large sway toward the right occurs, and

viceversa. Figure 4.13 shows a montage of the first 2 cycles of the optimized sway

gait. The behavior just mentioned as well as the directions of the body shifts can be

appreciated here.
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Figure 4.13: First 2 cycles of the optimized sway gait
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EFFECT ON SATURATION

The variation of τ
%,max for the optimized (sway) gait is plotted in Figure 4.14, with

the reference values shown for comparison. The following observations can be made

from this plot:

1. The sway optimization has succeeded in reducing all the peaks by different

amounts. The largest reduction (≈ 50%) is seen at the 1st step of the gait once

it has become regular after the 3rd cycle.

2. More importantly, the maximum peak which previously reached saturation has

been reduced by 23%, preventing saturation with a comfortable margin.

3. After the 3rd cycle, the reference gait experienced maximum peaks > 90%.

By applying sway, the maximum peaks have been reduced to ≈ 70%. This is

important because the benefit of sway is not limited to the critical 1st cycle, but

is seen in the long-term operation of the robot.

4. It can be seen that the distribution of peaks has changed in the steady state.

Instead of 2 high peaks followed by a low one, the new pattern is 1 high peak

surrounded by 2 low ones. This means that the new critical steps are the

second ones on each side, when the adjacent legs are at their maximum spread

(see Figure 4.13).

4.6 Increasing Optimization Granularity

The optimization presented in this chapter can be applied to the gait at higher granu-

larity if desired. This process is not difficult, but requires some thought to understand

the necessary actions and consequences.

The level of granularity used in the above simulations and experiments assumes

that the variation of torques during a step is small. In some cases better results can

be obtained by optimizing the body position at several waypoints of the leg swing.

Similarly, a choice has been made to execute straight-line body shifts between optimal



CHAPTER 4. ZERO-INTERACTION GAIT OPTIMIZATION 89

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

Gait Time Step

τ %
,m

ax

 

 

∅

↔

↑6 →

↓
↔

↑5 →

↓

↔

↑4
→

↓

↔↑1 →
↓
↔

↑2
→

↓

↔

↑3
→

↓

↔

↑6
→

↓↔

↑5
→↓

↔
↑4

→↓
↔

↑1 →

↓

↔

↑2
→

↓↔
↑3

→↓↔

↑6
→

↓

↔

↑5
→
↓

↔↑4
→↓

↔

↑1
→

↓

↔

↑2
→

↓↔
↑3

→↓

Reference
Sway

Figure 4.14: Variation of τ
%,max for the sway gait. The values for the reference gait

are shown for comparison.

poses. It would be possible, however, to find an optimal path between consecutive

robot poses to minimize the maximum torque ratios throughout the shift.

OPTIMIZATION OF STEPS

For simplicity the optimization presented above was carried out including reachability

constraints for the 4 essential waypoints of a step: initial footfall, lift waypoint, drop

waypoint and target footfall. This guarantees that the resulting body shifts will allow

execution of the steps without the need for additional moves. In proceeding like this,

only one optimization is solved per step. For this optimization, an assumption must be

made as to whether the stepping leg is in the initial, lift, drop or target configuration.

Since it was observed that higher torque ratios tend to be present at the lift waypoint,

this configuration was used during optimization.

The tradeoff is that the variation of torque ratios during step execution is not

fully captured. Therefore, the body position might not be optimal for the rest of the

waypoints (though it will be close to optimal). A first option for improvement is to
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start with two optimizations per step:

1. One with the stepping leg in the lift waypoint configuration, and excluding the

drop and target waypoints from the reachability constraints.

2. A second one that excludes the start and lift waypoints, and uses the drop

waypoint configuration for the stepping leg.

The above would provide two optimal robot configurations to be connected. If

no obstacles (e.g. boulders) are in the vicinity of the stepping leg and the robot is

on approximately horizontal ground, it is then possible to generate a C-space motion

plan to execute the step, avoiding only a ground modeled as a flat plane. This

produces a list of waypoints for that leg, and an optimal body pose can be computed

via optimization with the stepping leg at each of these configurations. The start, lift,

drop and goal waypoints can be excluded from reachability for these optimizations.

The procedure outlined above will yield optimal body poses for the specific motion

plan generated for the leg. However, it says nothing about whether that plan is

optimal in the sense of torque percentage minimization, or if a better plan may be

found. In any case, it is unclear if a sufficiently large reduction in torque ratios could

be obtained to justify the significant computational overhead. This is a possible

avenue for future research.

The problem of generating the C-space motion plan for the leg is more difficult

if there are obstacles to avoid along the way. In the previous scenario the ground

could be modeled as a horizontal plane, meaning that the terrain mesh as seen in the

{L} frame is invariant to body shifts. With more complex terrain, this can no longer

be assumed to be the case. Thus a set of waypoints for the leg computed from a

given body pose may result in collisions once the body is shifted to a slightly different

location.

Numerous approaches are conceivable in this case and the tradeoffs should be

weighed carefully to prevent unproductive computation. One possibility is to plan

the step incrementally: make an initial plan connecting the lift and drop waypoints,

then proceed as in the flat horizontal ground case, optimizing the body pose for each
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waypoint until a collision is detected, say at waypoint p. At this point, replan to

connect p and the drop configuration, continuing as above until a feasible plan is

found.

As in the previous case, optimality is only guaranteed in the context of the motion

plan obtained. However in very complex terrain finding a feasible plan might already

be sufficiently difficult, making further optimization a decision to be weighed very

carefully.

OPTIMIZATION OF BODY SHIFTS

Optimal body shifts can be accomplished by discretizing the motion of the body

along the desired direction of motion, and finding the optimal values for the re-

maining degrees of freedom. That is, given a body shift between two consecutive

optimal configurations (xb,0, yb,0, zb,0,φb,0, θb,0,ψb,0)∗ and (xb,f , yb,f , zb,f ,φb,f , θb,f ,ψb,f )∗

it is possible to perform k optimization steps as summarized in Algorithm 1 (the

direction of motion is assumed to be x in this example). The resulting sequence of

body configurations provide a piecewise-linear approximation to the optimal body

shift.

Algorithm 1 Optimize a body shift
Require: k {Optimization granularity}
1: ∆xb ←

xb,f − xb,0

k
.

2: xb ← xb,0

3: while xb < xb,f do
4: (∆yb,∆zb,∆φb,∆θb,∆ψb)∗i ← Optimize at xb

5: xb ← xb + ∆xb

6: end while

4.7 Summary

This chapter presented an optimization technique to prevent joint saturation in legged

robots by means of specialized motions of the body. The resulting sway gait was
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shown in simulation to have the benefit of preventing saturation and reducing the

peak torque ratios in the steady-state gait.

The results presented here assume that zero-interaction walking takes place. Robots

equipped with active force control capabilities will be able to obtain the full benefit

of the sway gait. In the absence of force control the robot is commanded exclusively

through joint angles, and the achievable benefit depends on the accuracy of the robot

and ground models, as well as the deviations that these present. The following chapter

will examine the sensitivity of the sway gait to variations in contact force magnitude

and terrain characteristics.



Chapter 5

Force-Torque Sensitivity Analysis

The previous chapter outlined a technique for torque minimization that relies on the

assumption that tangential forces are close to zero, and normal forces conform to those

calculated for the mass-spring system balance at a given robot configuration. This

chapter examines the effect that deviations from these nominal forces have on joint

saturation, and how this translates into terrain properties. The chapter is organized

as follows:

§5.1 derives the general sensitivity equations.

§5.2 examines the sensitivity variation for the ATHLETE robot during execution of

the optimized sway gait.

§5.3 describes the calculation of tolerable contact force deviations, and how these

translate into traversable terrain characteristics.

§5.4 summarizes the key lessons from the sensitivity analysis.

5.1 Preliminaries

In the absence of an active force control system, the robot is commanded exclusively

through joint angles. The joint torques depend on the external forces and moments

applied at each foot, and unmodeled external factors can alter these forces. It is as-

sumed that the contact points are unable to exert moments (meaning the moments are

all zero), so the joint torques are functions of the vertical force fz and the tangential

forces fx, fy only.

93
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The analysis begins with the well-known equation relating joint torques to external

forces:

"τ = JT "F (2.15)

The force/moment vector is of dimension 6 × 1, and in the case of ATHLETE

which has 6 joints per leg, the transpose of the Jacobian is 6 × 6 and the torque

vector is 6 × 1. The variation of torque as a function of force is linear, and it follows

that the (i, j) component of JT represents the slope of the line relating τi to fj. In

other words, JT (i, j) is the sensitivity of joint i’s torque to variations in force j. For

convenience, this sensitivity is denoted as Si,j
1:

Si,j = JT
i,j (5.1)

In the context of preventing joint saturation, Equation 5.1 is insufficient because it

relates to the torque value, rather than the percentage of maximum allowable torque

for a given joint. To correct this, recall that the percent torque is given as:

τ%i =

∣

∣

∣

∣

τi

τmax,i

∣

∣

∣

∣

(5.2)

∴ τ%i =

∣

∣

∣

∣

1

τmax,i

JT
i,jfj

∣

∣

∣

∣

(5.3)

And the sensitivity of τ%i to changes in fj can now be written as:

S%i,j =
1

τmax,i

∣

∣JT
i,j

∣

∣ (5.4)

1The index j in Si,j is replaced here with the appropriate letter rather than a numerical index.
For example S1,z is the sensitivity of joint torque 1 to fz. This could equivalently be denoted S1,3

if the force components are numbered from 1 − 3
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5.2 Sensitivity Throughout a Gait

It can be seen that Equation 5.4 is a function of the leg’s geometry at a given instant

in time, scaled by the maximum allowable torque for that joint. A way to think about

it is that the moment arms of forces applied at the foot vary with geometry, and so

does their impact on the torque of a given joint.

It follows that sensitivity varies throughout the execution of a gait. For this reason,

it is necessary to explore how this variation takes place. The equations described in

§5.1 can be applied to any walking robot executing a statically-stable gait.

Here the sensitivity for the reference gait of the ATHLETE robot is analyzed

and compared to the optimized gait. This is done for two different groups of legs:

“forward-facing” and “side-facing”. These groups are illustrated in Figure 5.1, and

they represent legs that, due to symmetry, experience similar configurations through-

out the gait.

Figure 5.1: Forward and side-facing legs.

5.2.1 Forward-Facing Legs

Figure 5.2 shows the variation of maximum vertical and tangential sensitivities for

forward-facing legs during the first 3 gait cycles of the reference and optimized gaits.

In both cases, it is evident that the sensitivity in the vertical direction is very small

compared to the tangential direction. Furthermore, of the tangential sensitivities the

one in the X direction is the highest for most of the gait.
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Figure 5.2: Sensitivity variations for forward-facing legs throughout reference and
optimized gaits.

No significant difference exists between the sensitivities before and after torque

minimization. The peak sensitivities remain approximately the same, with only a

slight reduction in the peak-to-peak sensitivity for the tangential directions.

5.2.2 Side-Facing Legs

Figure 5.3 shows the sensitivity variations for the side-facing legs. As with the

forward-facing legs, it is observed that the vertical sensitivity always remains well

below the tangential ones, and that the sensitivity in the X̂ direction is greatest.

Comparing as before the sensitivity before and after torque optimization, the

peaks in the X̂ direction are seem to be basically unaffected. However, the peak

sensitivity in the Ŷ has increased by about 15%, and in the Ẑ direction by about

20%. These increases are not drastic, but are worth keeping in mind as trade-offs of

torque minimization.

5.2.3 Discussion

The results of the previous analysis show that variations in the magnitude of contact

forces can have a large impact on saturation, especially in the tangential direction.
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Figure 5.3: Sensitivity variations for side-facing legs throughout reference and opti-
mized gaits.

This has two primary implications for walking robots.

First, it motivates the implementation of active force control when possible. If cost

or other reasons limit sensor availability, the priority should be given to tangential

force control. Second, it suggests a careful analysis of the factors that may introduce

variations in the contact forces. These include terrain imperfections, robot model

uncertainty, sensor accuracy and controller accuracy.

The information contained in Figures 5.2 and 5.3 provides a high-level picture of

the gains in different directions. However this information is insufficient to determine

what kind of terrain can be traversed, or to tackle practical aspects of sensor selection

or controller tuning. This is owing to the fact that the magnitude of the contact forces

also plays a central role, so a direction with very low gain but large applied force can

just as easily cause saturation. In the next two sections, terrain characteristics and

sensor selection will be discussed in more detail.

The procedure to analyze either of these cases is similar: first, the sensitivities

at the different stages of the gait must be determined as outlined in the previous

section. The magnitudes of the vertical contact forces must also be quantified; this

requires only kinematic information if the assumption of zero interaction is made.
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With this in hand the analysis can then turn to individual cases: variations in the

normal direction only, or normal and tangential needed to induce saturation.

In fact when normal and tangential forces are present they may all contribute to

joint saturation. For simplicity the effect of normal forces may be studied indepen-

dently under the assumption of zero interaction. However, the tangential direction

can only be studied for some known distribution of normal forces. This is because

tangential forces can only be exerted with the leg in contact with the ground, which

implies non-zero normal force.

Normal Forces

Because a vertical nullspace exists for robots with ≥ 4 legs the number of force

combinations for static equilibrium is by definition infinite. However, an approximate

analysis can be done by looking at each leg independently as follows: at timestep t,

given a nominal value of fz, a sensitivity SFz ,max for the critical joint in the leg, and

its corresponding torque limit τmax, how much additional normal force ∆f ∗
z is needed

to drive the critical joint to saturation? This is discussed in §5.3.1.

Tangential Forces

Looking now at variations of tangential forces only, the question to answer is: at

timestep t, given a known value of fz, the sensitivies Si,x, Si,y, Si,z for all the joints

in the leg, and the torque limits τmax,i, how much additional tangential force (∆f ∗
x or

∆f ∗
y ) is needed to drive the critical joint to saturation? The analysis is carried out

one direction at a time. This is discussed in §5.3.4.

5.3 Acceptable Force Deviations

This section describes the method to calculate the variations in contact forces that can

be tolerated by the robot without causing joint saturation. The analysis is applied to

the optimized sway gait, and the results will be translated into terrain characteristics

in the following section.
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5.3.1 Normal Force fz

When joint i reaches saturation the following equation is satisfied, keeping in mind

that gravity torques are present for massive legs 2:

∣

∣JT
i,zfz,i + τg,i

∣

∣ = |τmax,i| (5.5)

This equation can be satisfied with a positive or negative value of fz,i. The two

values of critical force can be obtained by solving each of the following equations

separately for fz,i:

JT
i,zfz,i + τg,i = τmax,i (5.6)

JT
i,zfz,i + τg,i = −τmax,i (5.7)

It follows that:

f ∗
z,i,1 =

τmax,i − τg,i

JT
i,z

(5.8)

f ∗
z,i,2 =

−τmax,i − τg,i

JT
i,z

(5.9)

Given that the robot is unable to pull at the feet, only negative reaction forces

can appear (expressed in {R}). Therefore at each time step the critical force for joint

i will be the negative one, obtainable as the smallest of the two solutions:

f ∗
z,i = min(f ∗

z,i,1, f
∗
z,i,2) (5.10)

For a leg 1 with n joints, the critical normal force is given by the minimum over

2In these equations, the Jacobian component JT
i,z is also the sensitivity Si,z, as explained at the

beginning of this chapter.
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all joints:

f ∗
z," = min(f ∗

z,i) i = 1 . . . n (5.11)

Finally, the tolerable variation ∆f ∗
z," can be calculated as the difference between

the critical force and the expected one:

∆f ∗
z," = f ∗

z," − fz," (5.12)

A value of ∆f ∗
z < 0 would arise if a leg already contains a saturated joint.

5.3.2 Acceptable fz Deviations for the Sway Gait

The critical force f ∗
z and acceptable deviation ∆f ∗

z can now be obtained by means of

Equations 5.8 – 5.12. Figure 5.4 shows the value of critical force f ∗
z for each of the 6

legs of ATHLETE, during the first 6 steps of the sway gait 3. The vertical force fz

that the leg would experience in the nominal case is also shown. A greater distance

between the curves of fz and f ∗
z means that there is more room for disturbances. Legs

1 and 3 have the smallest margin when the 5th step of the cycle is executed. These

legs are adjacent to leg 2 and experience the largest forces at that instant in time.

They are also fairly stretched out, causing their critical joints to approach saturation.

3The special shorthand used in these plots to indicate the type of move that each data point
represents was defined in Table 4.1.



CHAPTER 5. FORCE-TORQUE SENSITIVITY ANALYSIS 101

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g1

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g2

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g3

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g4

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g5

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

Time step

Fo
rc

e 
[N

], 
Le

g6

 

 

∅        ↔ ↑6      →    ↓     ↔ ↑5      →    ↓     ↔ ↑4      →    ↓     ↔ ↑1      →    ↓     ↔ ↑2      →    ↓     ↔ ↑3      →    ↓     ↔

f*z (Critical)
fz (Expected)

Figure 5.4: Critical forces for the sway gait. The plots show the value of vertical force
that would result in saturation (f∗

z ).

From these curves it is possible to determine the critical leg at each time step of

the gait. This will be the leg with smallest tolerable ∆f ∗
z . The critical values for the

robot are summarized in Figure 5.5 for the first gait cycle. These are in the range of

430N to 2800N. The minimum tolerable increase in force (430N in this case) is the

worst-case scenario during the execution of the optimized gait. Hence it can be used

to define the maximum bump size that the terrain should have, as discussed in the

following section.
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Figure 5.5: Tolerable increase in normal force during sway gait execution.

5.3.3 Terrain Characteristics – Bumps

The analysis presented in the previous section gives an idea of the sensitivity of

torque ratio to forces. It is necessary to understand how this sensitivity translates

into external factors such as the texture of the ground which is traversed by the robot.

When the ground has features that are not present in the model used for planning,

contact force variations are likely to occur and change the saturation behavior of the

robot.

The mechanism by which these variations happen include: vertical footfall offsets

caused by bumps, horizontal footfall offsets caused primarily by robot sag, and redi-

rection of the net contact force as a result of contact slope. The first of these – bump

size – is calculated here. Footfall offsets and contact slopes will be covered in §5.3.6

and §5.3.7.

Focusing now on bump sizes, when the actual ground contact point is higher or

lower than expected and the robot is commanded in joint space, the vertical contact
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force will deviate from the nominal value. A bump will cause a higher than expected

force because the robot starts pushing the ground early. A depression will have the

opposite effect.

The actual interaction with a real terrain is difficult to predict because various

legs may be stepping on bumps or depressions simultaneously, depending on the local

ground characteristics, starting pose and gait. Here a simplified analysis is made,

assuming that only one leg is affected by a bump at any given time. Specifically, the

critical leg at each gait event gives the upper bound of acceptable force deviations

(Figure 5.5). To translate these force deviations into bump sizes, a linear force-

displacement relation is assumed since the contacts have been modeled with linear

springs. A bump height hb will cause an equivalent additional deformation of the

spring. Therefore, the critical bump height h∗
b is the one that introduces a force equal

to the tolerable deviation ∆f ∗
z :

h∗
b =

∆f ∗
z

kz

(5.13)

Due to the force-displacement relation, h∗
b is inversely proportional to the spring

stiffness kz. This makes sense because a very rigid contact point will experience large

force variations with small displacements. For ATHLETE kz depends on the inflation

pressure and terrain stiffness. Three spring constants are considered here, in the range

of 3− 5 kgf
mm

where the robot is normally operated. Figure 5.6 shows the scaling of the

forces from Figure 5.5 by these three spring constants.

The tolerable bump ranges in size from 10-15mm. This is only realistic on very

benign terrain like the one encountered on the Mars Yard at JPL. The experiments

that will be presented in Chapter 7, conducted on such a terrain, were successful at

preventing saturation. A lesson apparent from inspecting Figure 5.6 is that lower tire

inflation pressures are more likely to succeed because larger bumps can be tolerated.

5.3.4 Tangential Force fx

The analysis for both tangential components is similar. This section shows only

the analysis in X, since it is the direction with the largest gain. Recalling that a
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Figure 5.6: Tolerable bump size during sway gait execution.

tangential force can only be applied with non-zero normal force, the equation that

describes joint saturation is:

∣

∣JT
i,xfx,i + JT

i,zfz,i + τg,i

∣

∣ = |τmax,i| (5.14)

Assuming a known normal force given for example by the zero-interaction solution,

this equation can be solved for fx,i to find its critical value. As with the normal force,

two solutions exist depending on the direction of the force:

f ∗
x,i,1 =

τmax,i − τg,i − JT
i,zfz,i

JT
i,x

(5.15)

f ∗
x,i,2 =

−τmax,i − τg,i − JT
i,zfz,i

JT
i,x

(5.16)

Unlike before, neither of these solutions is invalidated by the physics of the problem
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– tangential forces may be pointing either way. Therefore whichever direction has the

smallest magnitude yields the critical force:

f ∗
x,i =







f ∗
x,i,1 if

∣

∣f ∗
x,i,1

∣

∣ <
∣

∣f ∗
x,i,2

∣

∣

f ∗
x,i,2 otherwise

(5.17)

Once again for a leg 1 with n joints, the critical force is given by the minimum

over all joints:

f ∗
x," = min(f ∗

x,i) i = 1 . . . n (5.18)

Assuming the robot is on horizontal ground, the tangential components of the zero-

interaction force distribution are all equal to zero. Therefore the tolerable tangential

force deviation is simply:

∆f ∗
x," = f ∗

x," (5.19)

5.3.5 Acceptable fx Deviations for the Sway Gait

Figure 5.7 shows the variation of ∆f ∗
x given fz for all 6 legs of ATHLETE. The critical

time step is again the execution of the 5th step in the gait, which is taken by leg 2. The

adjacent legs (1 and 3) are able to tolerate the least amount of tangential force (275N)

because they are already heavily loaded by the normal force and their configuration

is fairly outstretched.
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Figure 5.7: Critical tangential forces for the sway gait. The plots show the value of
tangential force that would result in saturation (f∗

x).

For the complete robot the tolerable tangential force is determined by the mini-

mum over all legs at each time step. The variation of this critical force is shown in

Figure 5.8. The magnitude of the tangential critical force oscillates in the vicinity of

550N, but drops to the previously mentioned critical value when leg 2 is lifted. As

expected, the valleys of this plot take place during leg lifts due to the increased load-

ing of the legs that remain on the ground. The following subsections discuss how the

critical force translates into acceptable contact point offsets and local terrain slopes.
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Figure 5.8: Tolerable tangential force during sway gait execution.

5.3.6 Terrain Characteristics – Footfall Offsets

The appearance of non-zero tangential forces in the nullspace can be caused in dif-

ferent ways. If the robot is commanded in joint space and the actual contact point

with the ground is not exactly where anticipated, the contact springs will be loaded

laterally as the robot settles into the requested joint angles.

The error in foot placement can in turn be a consequence of sag, in concert with

joint space control. With this type of control the motion of the foot is specified by

purely geometric means (either the final joint angles, or a sequence of joint configu-

rations that move the foot in a straight line). When the robot sags, the pre-planned

motion of the foot will intersect the ground at a location other than the intended one.

Then as the robot pushes up tangential loading arises.

The actual magnitude of tangential force induced in this manner is not easy to

predict, even assuming that sag can be modeled precisely. This is because the me-

chanics of the foot-soil interaction may provide a certain degree of leniency. That
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is, if the top-most layer of the ground consists of loose soil then a certain amount

of slippage will occur as the foot makes initial contact with the ground and begins

pushing the body back up. Once the normal force builds up sufficiently to prevent

violation of the friction cone no more slippage will occur and the contact point is

fixed.

Figure 5.9 shows the lateral offset that can be tolerated by the ATHLETE robot

during the sway gait. For the operational inflation pressures of ATHLETE this ranges

between 7.5-10mm which is very small compared to the size of the robot. The success-

ful experiments conducted with the robot at JPL demonstrate that this is achievable

on benign terrain such as the one found in the Mars Yard, or wherever the deformable

surface layer is likely to help.
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Figure 5.9: Tolerable footfall offset during sway gait execution.
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5.3.7 Terrain Characteristics – Contact Slope

Another situation that causes unanticipated tangential forces to appear is if the local

slope at the contact point is different than the one assumed by the model used for

planning. The local slope redirects the contact force away from the vertical, thus

introducing a horizontal component that can contribute to saturation. Figure 5.10

shows the acceptable contact slope, assuming a nominal slope of 0◦. For this particular

gait the critical value is 7◦.

0 5 10 15 20 25
0

5

10

15

20

25

30

Time step

Sl
op

e 
[d

eg
]

∅

↔

↑6 →

↓

↔

↑5
→

↓

↔

↑4
→

↓

↔

↑1
→

↓ ↔

↑2 →

↓

↔

↑3
→

↓
↔

Figure 5.10: Tolerable contact slope during sway gait execution.

5.4 Conclusion

The results presented in the previous two sub-sections demonstrate the important

role of tangential forces in joint saturation. As found in §5.2 the largest gain for

saturation is in the tangential directions. Subsequent analysis showed that this limits
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the robot to walk on very benign terrain, with bumps ≤ 10− 15mm, footfall position

offsets ≤ 7.5 − 10mm and local slope variations of ≤ 7◦.

The analysis presented in this chapter suggests that a great benefit can be gained

from closed-loop control to achieve the desired values of contact forces accurately. The

full benefit of the zero-interaction sway gait presented in Chapter 4 is only realizable if

tangential forces are zero as modeled. Furthermore, if force control is available to zero

out tangential forces, then any other desired value can also be achieved. Therefore the

nullspace of tangential forces can be exploited to obtain larger saturation margins.

The potential benefits of active force control and the nullspace are explored in greater

detail in the following chapter.



Chapter 6

Gait Optimization With Use of

Null Space

As explained in Chapter 2 there are multiple combinations of contact forces that satisfy

the static balance constraints. These are collectively known as a nullspace, and can be

exploited to reduce proximity to saturation further. This chapter describes a technique

to determine the optimal combination of contact forces for a given robot pose, and

provides simulation results for different scenarios that make use of this optimization.

The chapter is organized as follows:

§6.1 gives an overview of the solution approach.

§6.2 illustrates the problem for the case of a single leg.

§6.3 extends the analysis to optimize the force distribution of the complete robot.

§6.4 presents simulation results for various scenarios that use force optimization.

§6.5 summarizes the key insights and tradeoffs of the different approaches.

6.1 Outline of Approach

The process of using the nullspace of contact forces to prevent saturation can be

divided into two parts:

1. Determining the optimal distribution of forces among the feet.

2. Applying these forces during gait execution using force control.

111
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The rest of this chapter will focus on the first of these problems: determination

of the best possible distribution of forces. With that in mind, the calculation of the

best force distribution can be posed as an optimization problem whose cost function

consists of the ∞-norm of torque ratios as used in Chapter 4, plus additional terms

to reduce the effort1. Since the resulting cost function and constraints turn out to

be linear, the optimization is a linear program. To gain an insight into the potential

benefit of exploiting the nullspace, the case of a single leg will be examined first,

followed by the application to the complete robot.

6.2 Optimal Forces for a Single Leg

Recall that the torque ratio for joint i is defined as follows:

τ
%,i =

∣

∣

∣

∣

τi

τmax,i

∣

∣

∣

∣

(6.1)

In this expression, τi refers to the total torque. If the robot has approximately

massless legs, this is simply the torque needed to balance external forces. Otherwise,

gravity torques must be added as well.

Note that the above expression is a piecewise-linear function of the contact forces,

which are the design variables. For any given joint, piecewise linearity is a result of

the absolute value, so the cost function is essentially “V”-shaped. Since the objective

is to prevent joint saturation, the cost function to be minimized is:

J = ‖τ
%,1, . . . , τ%,n‖∞ (6.2)

This is also a piecewise linear function, as will be shown in the next two sub-

sections. As a reminder, Figure 2.5 shows the location and orientation of the {Li}
reference frames.

1Here effort is defined as the sum of the magnitudes of contact forces –
∑

i=1..nc
(|fx,i| + |fy,i| + |fz,i|).
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6.2.1 Force in the X Direction

As mentioned in the previous chapter, it is only possible to exert tangential forces if

there is a non-zero normal force applied. For this example the robot is assumed to be

in the standard pose shown in Figure 4.6, with all feet on the ground. Because this

pose is symmetric, the optimal force components are the same for all legs and satisfy

the balance constraints. Thus each leg is carrying 1
6 of the weight (1470N). With this

applied vertical force and no force applied in Y , the variation of ‖"τ
%
‖∞ as a function

of fx is shown in Figure 6.1.
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Figure 6.1: Maximum torque ratio vs fx, given fy = 0N, fz = 1470N. The minimum is
at fx = 22.04N.

It can be seen that min(‖"τ
%
‖∞) is achieved with a non-zero value of fx = 22.04N.

Since this is the required external force, it means that the leg would need to squeeze in

the −X direction. A non-zero force component is better than zero interaction because

it redirects the net force so that the moment arm to the critical joint decreases,

reducing the observed torque. If this redirection is taken to an extreme, such that

the net force acts exactly through the axis of the critical joint, then a different joint

will become the critical one. Therefore an ideal middle ground exists, which can be

determined by optimization.

To clarify this, Table 6.1 summarizes some cases of interest. For negative values of
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fx the critical joint is the knee pitch (KP). At the optimal value of fx the torque ratios

of the KP and HP joints have been equalized. A further increase of fx in the positive

direction would make HP the new critical joint as KP approaches zero torque. The

optimal tangential force is very small compared to fz. The exact values depend on

the specific configuration of the robot, but the result is consistent with the sensitivity

analysis from Chapter 5, which demonstrated that large gains exist in the tangential

direction.

fz(N) fx(N) τ
%,max Critical Joint

1470

-30 0.426 KP

0 0.391 KP
∗ 22 0.365 KP/HP

30 0.372 HP

Table 6.1: Torque ratio variation vs fx

6.2.2 Force in the Y Direction

Assuming the same value of normal force as before, it is now possible to examine the

effect of a lateral force applied in the Y direction. Figure 6.2 shows the ‖"τ
%
‖∞ as a

function of fy, with fx = f ∗
x = 22.04N, fz = 1470N. The main point of interest is that

the curve presents a flat area in the range of −600N ≤ fy ≤ 600N. This means that

in this range the variations of fy have no effect on the objective function. The reason

is that the critical joint (KP) is unaffected by fy because the force is parallel to the

joint’s axis. In fact, only two joints are affected by fy in this configuration – HY and

KR. Thus in order for fy to have an effect on the cost function, one of these two must

become the critical joint, which does not happen until the force is very large.

The key insight is that, depending on the configuration of the leg, a component

of tangential force may have no effect on cost. Strictly speaking any solution in the

flat area has the same cost and would be a valid minimum. However, if a force

component does not reduce the cost it is desirable to drive it to zero because this

yields the same benefit with the least effort. This motivates the augmentation of the
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Figure 6.2: Maximum torque ratio vs fy, given fx = 22.04N, fz = 1470N. The curve is
flat in the range of of −600N ≤ fy ≤ 600N, meaning that the maximum torque ratio is
not affected by fy in this region.

cost function with a weighted penalty and associated constraints designed to reduce

effort, as explained in §6.3.1.

6.3 Optimal Forces for the Robot

The previous section discussed optimal forces for a single leg of the robot. In the spe-

cific example that was used these optimal forces would satisfy the balance constraints

for the robot because the pose is symmetric. In the general case the legs may be in

very different configurations, and if their optimal forces were calculated in isolation

the resulting distribution would likely not result in static equilibrium. Therefore it is

essential to obtain the optimal force distribution taking all feet into account.

The cost function was defined in Equation 6.2, where n is now the total number

of joints under consideration. The problem is subject only to linear constraints, and

can be posed as a linear program by means of the following equivalent problem:
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Minimize:

J = t; t: scalar (6.3)

Given the design vector:

X = {t, fx1, fy1, fz1, . . . , fxn, fyn, fzn} (6.4)

The first set of constraints is given by the torque ratios, which are to be minimized:

t ≤ 1 (6.5)

τ
%,1 ≤ t

... (6.6)

τ
%,n ≤ t

Note the similarities with the sway optimization, except that the design vector

now consists of the contact forces at the feet. Assuming that the robot is in static

equilibrium (or moves slowly enough to analyze its motion as quasi-static), the next

set of constraints consists of the force and moment balance of the robot. These

equations were previously derived in §2.4.2, and are summarized here for convenience.

Γ"f =

[

−"fg

0

]

(2.28)

Where Γ is the matrix resulting from stacking the Φ and C matrices:

Γ =

[

I · · · I

C1 · · · CNc

]

6×3Nc

(2.29)

The final set of constraints is given by the necessary satisfaction of contact friction

cones. These constraints actually serve a dual purpose: first, they guarantee that

squeezing forces do not cause a foot to slip. Second, without these constraints it

would be possible for the optimizer to converge to a force distribution where one or
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more feet have fz = 0, but fx 1= 0 or fy 1= 0. This is physically impossible because

tangential forces can only be applied if the foot is planted on the ground, which

implies fz 1= 0. The situation is prevented here because it would violate the friction

cone constraint.

These constraints are expressed in terms of contact friction cones, which represent

the maximum valid tangential force ft for a given value of normal force fn (Figure

6.3(a)). Assuming that the tangential force is separated into its two components fx

and fy, the friction cone constraint can be stated as:

√

f 2
x + f 2

y ≤ |µs,ifz| (6.7)

Equation 6.7 is nonlinear, so it is common practice to use a conservative lineariza-

tion in the form of the square pyramid circumscribed by the exact friction cone (Figure

6.3(b)). This means that, for a given contact friction coefficient µs,i, the linearized

conservative pyramid is within the friction value (Figure 6.3(c)):

µc,i =
µs,i√

2
(6.8)

fn

ft

(a) Friction cones (b) Friction pyramid

µs

µc
X

Y

(c) Conservative friction
coefficient

Figure 6.3: Friction cone constraints.

It is now possible to write separate constraints for fx and fy using the conservative
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friction coefficient. The basic relation to be satisfied is:

|fx,i| ≤ |µc,ifz,i| (6.9)

|fy,i| ≤ |µc,ifz,i| (6.10)

The vertical force in this case is known to be fz ≤ 0 in the {R} frame, because it

is not possible for this particular robot to grasp the ground and pull. Therefore, the

above can be broken down into four constraints per foot in contact to eliminate the

absolute value operator:

fx,i + µc,ifz,i ≤ 0 (6.11)

−fx,i + µc,ifz,i ≤ 0 (6.12)

fy,i + µc,ifz,i ≤ 0 (6.13)

−fy,i + µc,ifz,i ≤ 0 (6.14)

Where

µs,i: Static friction coefficient at contact point i.

µc,i: Conservative friction coefficient at contact point i.

For rubber on concrete, µs is between 0.8-1.0. This value is used for the simulations

in this chapter, since it is adequate for initial indoor experiments with ATHLETE.

6.3.1 Cost Function Augmentation

Although the optimization problem shown above is complete, it is possible to improve

the solution further. As mentioned, it is desirable to reduce the net effort by driving

to zero any forces not producing a benefit. This can be accomplished by adding a

weighted penalty for non-zero tangential and normal forces. The first possibility to

setup the effort reduction constraints would be:

Ja = t + εx

∑

i

fx,i + εy

∑

i

fy,i + εz

∑

i

fz,i
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However, because fx and fy can be positive or negative, this would not always

have the desired effect. The real objective is to penalize the sum of absolute values

of forces. A mechanism similar to the one used for dealing with torque ratios can be

applied. For this, auxiliary design variables tx,i, ty,i and tz,i are added for each of the

nc feet in contact. The new cost function is the following:

Ja = t + εx

∑

i

tx,i + εy

∑

i

ty,i + εz

∑

i

tz,i (6.15)

With the following new design vector:

X = {t, fx,1, fy,1, fz,1, . . . , fx,n, fy,n, fz,n, tx,1, ty,1, tz,1, . . . , tx,n, ty,n, tz,n} (6.16)

The basic effort reduction constraints to satisfy are:

|fx,i| ≤ tx,i

|fy,i| ≤ ty,i

|fz,i| ≤ tz,i

These are broken down into six constraints per contact point to eliminate absolute

values:

fx,i ≤ tx,i (6.17)

−fx,i ≤ tx,i (6.18)

fy,i ≤ ty,i (6.19)

−fy,i ≤ ty,i (6.20)

fz,i ≤ tz,i (6.21)

−fz,i ≤ tz,i (6.22)

The number of constraints has therefore increased by 6nc for nc feet in contact
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with the ground. The additional constraints cause a small increase in computation

time, but have the benefit of maximizing distance to saturation with the smallest

possible magnitude of forces.

Finally, the ε factors should be selected such that the scaled summations are much

smaller than t, in order to avoid affecting the optimal solution much.

6.3.2 Summary of Optimization Equations

In summary, the final set of equations defining the LP for optimal force distribution

is as follows.

Minimize:

Ja = t + εx

∑

i

tx,i + εy

∑

i

ty,i + εz

∑

i

tz,i

Given the design vector:

X = {t, fx,1, fy,1, fz,1, . . . , fx,n, fy,n, fz,n, tx,1, ty,1, tz,1, . . . , tx,n, ty,n, tz,n}

s.t.:

t ≤ 1 Torque Constraints

τ
%,1 ≤ t

...

τ
%,n ≤ t

Γ"f =

[

−"fg

0

]

Balance Constraints
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fx,i + µc,ifz,i ≤ 0 Friction Constraints

−fx,i + µc,ifz,i ≤ 0

fy,i + µc,ifz,i ≤ 0

−fy,i + µc,ifz,i ≤ 0
...

fx,i ≤ tx,i Effort Reduction Constraints

−fx,i ≤ tx,i

fy,i ≤ ty,i

−fy,i ≤ ty,i

fz,i ≤ tz,i

−fz,i ≤ tz,i

...

6.3.3 LP Utilization

The optimal force distribution for a given robot pose can be found by means of the LP

optimization described above. There is more than one way to use this optimization

in the context of walking gaits. The options are:

• Apply the LP alone to each pose of the reference gait.

• Apply sway optimization and LP combined to each pose of the reference gait.

In this case the LP provides the cost for the higher-level sway optimization.

Additionally, since the contact force distribution has tangential and normal nullspace

components, these can be exploited one at a time or simultaneously. The following

cases are simulated and discussed below:
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§6.4.1: Reference gait + tangential nullspace (fx,i, fy,i).

§6.4.2: Reference gait + full nullspace (fx,i, fy,i, fz,i).

§6.4.3: Sway + tangential nullspace (fx,i, fy,i).

§6.4.4: Sway + full nullspace (fx,i, fy,i, fz,i).

6.4 Simulation Results

The starting conditions for these simulations are exactly the same that were used in

§4.5 for sway compensation. The effect of applying only LP will be examined first,

followed by the combination of LP and sway.

6.4.1 Tangential LP – No Sway

Figure 6.4 shows the variation of τ
%,max for the sway gait and the reference gait with

LP optimization of tangential forces only 2. The maximum peak of the unoptimized

reference gait was at 103%. LP optimization has reduced this peak to 63% (an overall

reduction of 40%). For comparison, the maximum peak with sway only is 80%. The

peaks occur during the execution of steps as expected. Since the LP has been applied

at each gait time step, including the body shifts, the valleys have also been decreased

considerably relative to both the reference and sway gaits.

The normal forces in this case are the zero-interaction reactions, and the tangential

forces are calculated by the LP. Figure 6.5 shows the values of these forces for all the

legs of the robot. Two plots are provided for each leg: the first shows the variation of

all 3 force components for the initial 3 gait cycles of the reference gait with optimal

contact forces. The second is a polar plot of the tangential forces for all the same

time steps. All the forces are expressed in the {Li} frame.

The behavior of the fz in this case is given by the zero-interaction solution since

this component of the null space is not being actively selected. Each leg presents two

fz peaks per gait cycle. These happen when one of the adjacent legs is picked up

2The special shorthand used in these plots to indicate the type of move that each data point
represents was defined in Table 4.1.
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Figure 6.4: Sway gait vs tangential LP

(e.g. for leg 1, the peaks appear when legs 2 or 6 are lifted). That is, during the

force redistribution that occurs after a foot is picked up, the adjacent legs present the

highest forces, and the diametrically opposed leg experiences the lowest force.

The tangential forces remain below 1000N, approximately 2.5 times smaller than

the normal force (in fact in most cases they are below 500N). The lower magnitude

of tangential forces is expected for two reasons: first, since the robot is on horizontal

ground there is no tangential component of the robot’s weight. Second, the tangen-

tial directions see a larger gain (sensitivity) so smaller forces are required to impact

the torque ratios. From the polar plots it can also be seen that in many cases the

applied tangential force has only one component (i.e. only fx or only fy). These

would correspond to situations where the leg’s configuration is such that one of the

components has no effect on the objective function of the LP. However this is not

expected to happen all the time due to the changing geometry of the legs.
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Figure 6.5: Force variations for Fxy nullspace applied to the reference gait -{Li}
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6.4.2 Full LP – No Sway

Figure 6.6 shows the variation of τ
%,max for the case when the tangential and normal

nullspaces are exploited. The plot for the tangential-only case is also shown for

comparison. The maximum peak is now at 49% of saturation, a net reduction of 54%

relative to the original 103%. As compared to using only the tangential nullspace, an

additional benefit of 14% has been obtained. The difference between the results using

tangential-only and full nullspaces is small compared to the 54% reduction from the

unoptimized gait. This result is expected because as discussed in the previous chapter

the sensitivity in the normal direction is less than in the tangential directions. Thus

a larger benefit can be expected to derive from the use of tangential forces.

A behavior observable in this figure is that using the null space has a smoothing ef-

fect on the torque ratio curves: the difference between peaks is significantly decreased,

and the valleys have very uniform values near 20-25%. Finally the amplitude of the

oscillation between peaks and valleys is smaller.
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Figure 6.6: Tangential LP vs full LP

Figure 6.7 shows the values of normal and tangential forces for all 6 legs of the
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robot. All three force components have now been found by the LP optimization. A

very interesting behavior emerges when inspecting these plots: each leg now has two

fz valleys per gait cycle. One of these naturally occurs as before when the leg’s turn

in the step sequence arrives. The additional valley happens when the diametrically

opposed leg takes a step, and in most cases corresponds to fz = 0, which means

that the leg is picked up twice per gait cycle (the exceptions are legs 1 and 2 which

drop to values of 176N and 531N respectively). This means that for the purpose

of preventing saturation it is sometimes better to pick up two legs simultaneously

than just one. For this case the pick up sequence suggested by the optimization is:

6/3 → 5 → 4 → 1/4 → 2/5 → 3/6.

Note that since the gait planner has been setup to execute only one step at a

time, this does not mean that e.g. legs 6 and 3 step simultaneously. Instead, it says

that it is convenient to lift leg 3 while leg 6 takes a step, and then plant it back at

its original location. The key insight, however, is that gaits that step with multiple

legs simultaneously can be desirable for saturation reasons in addition to their known

benefit of increasing locomotion speed. This means that different reference gaits ought

to be considered if the global optimum is desired for the specific application. In other

words an additional optimization layer to design the reference gait would need to be

added, the cost of which would be provided by the LP or the LP+sway combination.

The lifting sequence found by the optimizer in this case is very close to a 6/3 →
5/2 → 4/1 gait, which executes steps with two diametrically opposed legs simultane-

ously. It is reasonable to assume that such a gait would constitute a better reference

gait than the current reverse wave gait from the standpoint of saturation. Investiga-

tion of whether this is the case is suggested as future work.

Finally, regarding the direction of the net tangential force, examination of the

polar plots shows a larger spread as compared to the case of fx,y null space, where

many forces were directed along the X or Y axis. However no significant difference

can be observed in their magnitude, which also remains below 1000N in this case.
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Figure 6.7: Force variations for Fxyz null space applied to the reference gait.
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6.4.3 Tangential LP With Sway

The torque ratio variation resulting from a combination of sway and tangential

nullspace forces is shown in Figure 6.8. The highest peak is at 48% of saturation.

This benefit is almost identical to the one obtained with full nullspace LP applied di-

rectly to the reference gait. A likely explanation of the similarity is the fact that both

methods profit from all 3 force components (by different mechanisms) – in the full-LP

case the normal forces are modified through the null space, while in the combined

sway + tangential LP this is achieved through the motion of the chassis.

The sway + fx,y nullspace case presents a similar equalization of peaks throughout

the gait as the nullspace without sway. It is also interesting to note that, while

observation of the peaks of the two curves in Figure 6.8 does not clearly suggest

either one being preferable over the other, the valleys are lower for the full nullspace

without sway in almost every case. Although this difference is less than 5% it may

be worth considering when deciding between the two techniques.
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Figure 6.8: Full LP vs Sway+Tangential LP

The resulting motion of the chassis is shown in Figure 6.9 below. Only the first

3 gait cycles are shown here, since the pattern is regular after the 3rd cycle. As

compared to the gait with only sway described in Chapter 4 it can be observed that
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the side-to-side amplitude of sway is smaller in the LP case once the robot settles

into a regular gait.

Figure 6.9: Body path during the initial three cycles of the combined sway+tangential
LP gait.

Figure 6.10 shows the variation of forces for all 6 legs of the robot. Similarly to

the case of tangential LP without sway, the net tangential forces are directed along

the X or Y direction exclusively a large percentage of the time. The magnitudes of

tangential forces stay within 750N, with only a few cases between 750-1000N. It is

interesting to note that the peak value of tangential forces coincides in time with the

peak value of torque ratio. With the current strategy this corresponds to the 2nd step

of the sequence at steady state (i.e. leg 5).

The normal force for each leg presents 2 major peaks per gait cycle as with the

previous cases that do not use the vertical null space. These peaks occur when the

adjacent legs are picked up.
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Figure 6.10: Force variations for combined sway and Fxy null space.
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6.4.4 Full LP With Sway

The largest reduction in the maximum torque ratio can be accomplished by combining

body sway and the nullspace in all 3 directions. This is shown in Figure 6.11 below.

The maximum peak is at 44% of saturation, a net reduction of 59% from the reference

gait value. As was the case with the LP-only cases, the difference between using

tangential forces only or the complete nullspace is not very significant (only 4%) in

this case). However, as expected, the curve with full nullspace always remains below

the one for tangential nullspace. The previously mentioned smoothing effect is also

present, and the maximum variation between the lowest and the highest peak is only

5% at steady state.
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Figure 6.11: Sway+Tangential LP vs Sway+Full LP

The resulting motion of the chassis is shown in Figure 6.12 below. Other than the

decrease in sway amplitude it is also worth mentioning the contralateral oscillation,

with the body moving to the right of the center line when the legs on the left hand

side are stepping, and vice versa. The same behavior is observed in every case where

sway is used.
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Figure 6.12: Body path during the initial three cycles of the combined sway+full LP
gait.

The variation of contact forces is shown in Figures 6.13. A behavior similar to the

case without sway is observed: the optimization reveals that it is often best to pick

up two radially opposed legs simultaneously. The pick up sequence that emerges in

this case is: 6 → 5 → 4/1 → 1/4 → 2/5 → 3/6. This is again very similar to the

6/3 → 5/2 → 4/1 gait, suggesting that the latter might constitute a better reference

gait to prevent saturation.

Regarding the direction of the net tangential force, a significant scatter is present

for some legs (e.g. legs 2 and 6), while others show some clustering on the fx, fy axis.

Leg 3 even shows a number of forces directed roughly along the 150◦ direction. In all,

the behavior is different for each of the 6 legs. Except in a case where all legs are in

the same configuration, there is no reason to expect symmetric forces between, say,

radially opposed pairs. Since each leg will generally be in a different configuration,

the balance equations might be satisfied with the force of one leg counteracted by two

opposite legs, for example.
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Figure 6.13: Force variations for combined sway and Fxyz null space.
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6.4.5 Friction Requirements

The use of the null space in the tangential direction mandates careful attention to the

friction conditions at the contact points. For the simulations presented in the previous

sections the friction coefficient was chosen to be µs = 1.0, which corresponds to rubber

on concrete. The actual minimum friction coefficient required varies throughout the

gait, and its value at each time step can be obtained from Equation 6.7 given the

values of fx, fy, fz returned by the optimizer.

Tangential LP – No Sway

Figure 6.14 shows the variation of required friction coefficient for the case of tangential

null space without sway (§6.4.1). In all cases the value of µs remains below 0.6, with

some legs requiring only about 0.2. The gaps in the plots correspond to the instances

when the leg of interest is unloaded (fz = 0), and hence no tangential force is applied.

Full LP – No Sway

The friction behavior for the full null space without sway (§6.4.2) is shown in Figure

6.15. The required friction coefficient in this case is higher than for the tangential-

only LP, and for leg 2 reaches a value of 0.95. This means that the net force for that

leg will be very close to the edge of the friction cone at that instant in time.

Referring to the plot of force variations for this case, shown in Figure 6.7, the

peaks are verified to correspond to cases where the leg is assigned a light vertical

load by the optimizer (fz is small). Although the selected forces satisfy the friction

constraint, it is possible that they might be risky if the friction coefficient is not

known precisely. In such cases, a more conservative value of µs could be selected for

the optimization. Another possibility is to make use of the full nullspace only if the

specific move is critical from the standpoint of saturation, requiring as much torque

reduction as possible.
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Tangential LP With Sway

Figure 6.16 shows the minimum required friction coefficient for the tangential null

space combined with sway (§6.4.3). The behavior is very similar to the case without

sway, with values that remain below 0.6.

Full LP With Sway

Finally, Figure 6.17 shows the variation for the full nullspace plus sway (§6.4.4). The

value of µs is higher than in the case of tangential-only nullspace with sway, but

remains below 0.65.
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Figure 6.14: Minimum µs required to prevent slippage when using Fxy nullspace.
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Figure 6.15: Minimum µs required to prevent slippage when using Fxyz nullspace.
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Figure 6.16: Minimum µs required for combined sway and Fxy nullspace.
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Figure 6.17: Minimum µs required for combined sway and Fxyz nullspace.
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6.4.6 Comparison of Approaches

The torque ratio plots shown in the previous sections provide a complete picture

of the behavior throughout the gait. From the perspective of preventing saturation

the most interesting quantity is the maximum peak because it is the closest that

the robot will come to its actuation limits for a given gait. Figure 6.18 summarizes

the maximum peaks for the reference gait and all 5 of the optimization approaches

previously discussed in this dissertation. These are shown in order of the benefit they

provide.
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Figure 6.18: Comparison of peak torque ratios for the gait optimization approaches
presented in this dissertation.

As the figure shows, the 4 approaches that actively use the null space of contact

forces outperform the reference and pure sway gaits. The best performance is obtained

from combining sway with full use of the null space. This is not surprising since adding

more degrees of freedom that modify the torque ratios should result in a higher benefit.

A discussion of these results is included in the following section.
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6.5 Discussion

It is clear from the analysis presented in this chapter that active use of the null

space offers very important benefits. In terms of saturation, the actuation margin is

improved by 40-54% when using only the null space directly on the reference gait.

Ultimately the selection of the best approach for a specific application depends on

a number of factors. For example if the robot must traverse tight spaces, sway may

not be acceptable. Pure use of the null space will therefore be the best choice in this

case, or wherever sway is not desired. It is also ideal for robots with severely limited

actuation, because it largely increases the margin to saturation.

Another consideration is that any approach that makes use of non-zero tangential

forces is dependent on a reasonable knowledge of the contact friction coefficient.

Otherwise there is a risk of causing a foot to slip as the tangential nullspace is excited.

For this work the assumption has been made that this coefficient is the same for all

the feet throughout the gait. On very heterogeneous terrain such an assumption may

not be valid. In that case a conservative estimate of friction properties can be used,

although this may limit the achievable reduction in torque ratios. The safest approach

in this case would be the zero-interaction gait.



Chapter 7

Experimental Results

This chapter describes the experiments carried out on NASA’s ATHLETE robot to

validate the sway optimization technique developed in this dissertation. The chapter

is organized as follows:

§7.1 describes the test site and robot.

§7.2 outlines the estimation of torques from available robot telemetry.

§7.3 presents the experimental results for the reference gait.

§7.4 presents the experimental results for the sway gait.

§7.5 summarizes some lessons learned during the experiments.

7.1 Description of Experiments

7.1.1 Test Location

The sway optimization technique developed in Chapter 4 was validated on the ATH-

LETE lunar hexapod, described in Chapter 3. The experiments were conducted at

the Jet Propulsion Laboratory’s Mars Yard facility in Pasadena, California. An aerial

view of this facility is shown in Figure 7.1. The Mars Yard is approximately 50x30m

and allows testing on a variety of terrains akin to those encountered on the moon and

Mars. The surface is made of compacted brick dust, and is generally fairly rigid with

142
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a thin surface layer of loose dirt.1

The locations where the experiments were conducted are labeled A© and B©. These

locations were found to be sufficiently planar and horizontal, with a maximum slope

of 3◦. The north portion of the Mars Yard consists of sloping terrain varying from 0◦

to about 30◦. In contrast, the south part contains boulder fields with a mix of real

and artificial rocks, which can be easily moved around to match known statistical

distributions of boulder size and location on the moon and Mars.

A
B

Figure 7.1: Aerial view of the Mars Yard at JPL (North is up). Experiments for the
reference gait were conducted at location A© in May 2009. The sway-optimized gait
presented in Chapter 4 was tested at location B© in June/July 2009.

The zero-interaction experiments took place during the months of May, June and

July, 2009. The reference gait was tested at location A© on May 14, 2009. The zero-

interaction sway gait was tested at location B© on June 29, 2009. The experiments

were carried out at different locations because of the limited time that the robot was

available. The exact initial conditions and observed results for each experiment are

described in the following sections.

1The friction coefficient for rubber on this surface is not readily available, but was not needed
for the zero-interaction experiments.
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7.1.2 Robot Used

Of the two working prototypes developed by JPL, the same robot (SDM-B2) was used

for all of the tests described in this chapter. The robot is equipped with pneumatic

tires, whose inflation pressures were measured to be in the range of 6 − 10psi. A

detailed description of ATHLETE was provided in Chapter 2.

No experiments with the LP-optimized gait were possible due to time constraints.

Experiments of this kind would also greatly benefit from closed-loop force control

capabilities not available on either of the two ATHLETE prototypes.

7.2 Joint Torque Estimation

The joint torque values used to evaluate the performance of the sway optimization

were estimated by incorporating sensor measurements of joint angles and the robot

attitude quaternion as will be described below.

The robot is equipped with an indirect torque sensing system which is described

in [Collins 07]. A detailed analysis of the telemetry from this system was carried

out, and the torque measurements were observed to have significant biases, rendering

them unusable for the purpose of these tests.

The best available estimate of the joint torques is therefore obtained as follows.

The torques due to contact forces are calculated from the measured Jacobian and the

estimated contact force:

"̂τext = JT
m

"̂F (7.1)

The Jacobian incorporates the joint angles measured by the robot’s encoders.

The force estimate is calculated as described in Chapter 2, using the spring-mass

model. Thus this estimate incorporates the measured joint angles, and the robot

pose quaternion indicated by the onboard IMU. The estimated total torques consist

of the external plus gravity components, per Equation 2.19. The latter are calculated

using the measured joint angles, robot pose and estimated CM locations of the leg’s

links.
2SDM-B = Software Development Model B
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7.3 Reference Gait

The reference gait for these experiments consists of a discontinuous reverse-wave

sequence, with one body shift after every step. The robot was driven to the starting

location A© near the west edge of the Mars Yard and placed in the standard driving

pose. The chassis was then commanded to a level orientation (zero roll and pitch) to

correct for the local slope, and a height of 2.1m in order to prevent any accidental

ground contact. Figure 7.2 shows the robot executing the reference gait.

Figure 7.2: ATHLETE executing the reference gait. The camera is at location A©
facing southeast, and the robot is walking toward the right of the image, due west.

The torque estimates for the first 8 steps of the reference gait are shown in Figure

7.3. The maximum torque ratio requested from the robot reaches 104.6% during the

execution of the 5th step of the gait, causing saturation of a joint. During this exper-

iment the robot was able to continue walking because it is equipped with mechanical

brakes at the joints that are able to support the extra load.

The modus operandi in this experiment was to close the brakes before each step

in the 5 legs that remain on the ground. In a different scenario, however, these legs

might need to correct actively for the sag of the chassis to keep it level, and the

motion would be interrupted by a saturated joint. This situation was encountered
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during tests with ATHLETE, as shown in Figure 7.4. Here the rear leg has started to

step, and one of the adjacent legs has saturated in the process of leveling the chassis.
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Figure 7.3: Torque ratio variation for the reference gait experiment on ATHLETE.

Figure 7.4: ATHLETE executing a sag-compensating reference gait. One of the legs
has reached saturation causing the motion to stop.
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7.4 Sway Gait

The reference gait from the previous section was optimized by means of sway and

executed on the robot. A photograph of ATHLETE executing this sway gait is shown

in Figure 7.5.

Figure 7.5: ATHLETE executing a sway gait

The variation of maximum torque ratio for the first 8 steps of the sway gait is

shown in Figure 7.6, along with the reference torque ratios for comparison. Except

in the case of the 8th step, the peaks were reduced by 5-25%. Of special interest is

the 5th step, which was improved from 104.6% to 79.2%, a net reduction of 25.4%

which prevents saturation with sufficient margin. The previously mentioned 8th step

had an observed increase of 4% after optimization. This was likely caused by slight

differences in ground texture at sites A© and B©.

The ATHLETE robot exhibits significant compliance coming primarily from the

compression of the tires. This causes the body to experience changes in height and

pose as the forces are redistributed during walking. These height and pose variations

may not be acceptable for some applications, for example when a manned habitat is

carried by the robot. They can also cause the feet to impact obstacles during step

execution if this sag is not estimated with enough precision.
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Figure 7.6: Torque ratio variation for the sway gait experiment on ATHLETE.

To prevent problems caused by sag the robot can use the legs that remain in

ground contact to push up and maintain the body leveled. This mode of walking is

more demanding on the joints because the load cannot be absorbed by the brakes,

since they need to be open in order to actuate the motors. For this reason the sag-

compensating gait is an ideal candidate for optimization.

An experiment was conducted to test this scenario. The robot was driven to

location B© on the Mars Yard and commanded to execute a sag-compensating gait

with sway. In contrast to the situation depicted in Figure 7.4, the requested motion

was completed successfully without reaching saturation, providing visual confirmation

of the predicted benefit of sway optimization. A snapshot of ATHLETE executing

this gait is shown in Figure 7.7.
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Figure 7.7: ATHLETE successfully executing a sag-compensating sway gait

7.5 Lessons Learned

7.5.1 Acceptable Terrain

The main drawback of not having force control is that terrain variations can cause

the robot to reach saturation, as discussed in Chapter 5. The experiments with

ATHLETE showed that it is possible to achieve successful walking without saturation

on benign terrain without active force control. Figure 7.8 exemplifies the kind of

terrain that can be accessed this way. Note that it would be acceptable for the

terrain to contain boulders, as long as the ground around them is sufficiently planar.

Similar terrain exists on lunar and Martian plains, but given the wide variety of

conditions likely to be encountered by the robot it would be important for planetary

robots to be equipped with force control capabilities.
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Figure 7.8: An example of acceptable terrain for execution of a sway gait without
force control.

7.5.2 Spring Constants and Compliance

The spring-mass model developed for simultaneous estimation of sag and contact

forces proved sufficient for the experiments with ATHLETE [Wheeler 10]. In general

the model was able to predict the robot’s compliance to within a couple of centimeters

when measured on a concrete surface. Experiments on the Mars Yard yielded mixed

results on this regard – the compliance of the ground compounds with tire deformation

to yield a softer net spring. The resulting spring constant proved difficult to calibrate

precisely in the model, because it appeared to vary with robot pose and location,

probably as a result of soil density variations. A sensor-based system to estimate the

spring constant continuously during walking would be useful for future experiments.

Such a system may also provide information needed to estimate the friction coefficient

of the ground when walking on a slope.

Another factor contributing to spring constant variations is the deformation of the

robot’s structure itself. The body of ATHLETE can deform significantly under load,

as can the different components of the legs. In a sense the model used here lumps all

compliances into a single spring constant. A more accurate estimate may be obtained
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by finite element analysis of the body components, which can yield load-deflection

curves for different loading conditions, which can then be incorporated into an online

compliance estimator. This would be a good avenue for future research.

7.5.3 Force Control

The experiments and simulations presented in this thesis strongly indicate the need

for force feedback capabilities on walking robots. While the joint-space approach

tested on ATHLETE successfully prevented saturation, force control is a requirement

to guarantee that the full benefit of the optimization techniques is achieved. Further-

more, a robot exploring a planetary surface will only rarely encounter benign terrain

like the one described in §7.5.1, and as a result the risk for joint saturation would

continue to exist if the contact forces cannot be adjusted precisely while negotiating

more irregular terrain.

7.5.4 Other

In addition to the experiments described in this chapter, walking was also tested on

slopes of 7◦ and 14◦, as shown in Figure 7.9. These experiments were intended to

test only the reference gait, so no optimization was applied. Even at these relatively

shallow inclinations the robot was observed to be very constrained kinematically. In

particular, since it was desired to keep the chassis horizontal the legs on the downhill

side reached maximum extension very quickly, while the ones on the uphill side had

little space to maneuver between the chassis and the ground.

While theoretically walking robots are capable of climbing very steep terrain, this

carries an underlying assumption that the orientation of the body is flexible. Indeed

keeping the body parallel to the local ground largely alleviates this issue, but it may

not always be possible depending on the payload. Geological studies of the moon and

Mars suggest that the maximum slopes on hills and impact craters can reach up to

35◦, depending on the angle of repose of the soil and whether a rocky substrate exists

(see e.g. [Heiken 91]). Such slopes would not be traversable with ATHLETE in a

level chassis configuration, but may perhaps be accessible if the body pose is relaxed.
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(a) 7◦ slope (b) 14◦ slope

Figure 7.9: ATHLETE walking on slopes of 7◦ and 14◦. The latter starts to place
severe kinematic constraints on the motion of the robot.

During the 14◦ slope experiment the robot was also observed to slide downhill a

short distance (< 5cm) on occasion. This points to the importance of taking into

account the contact friction coefficients when designing gaits for steeper terrain. This

can be done through friction cone constraints like the ones used in Chapter 6.



Chapter 8

Conclusions and Future Work

The work presented in this dissertation has demonstrated two motion optimization

techniques to prevent joint saturation in walking robots. This chapter reviews the

main contributions of this work, summarizes the lessons learned, and suggests areas

for future research.

8.1 Review of Contributions

• A zero-interaction gait optimization technique was developed that makes use of

body sway to prevent joint saturation. The margin to saturation was increased

by 20% for the ATHLETE robot. Field trials on the robot were successful,

enabling uninterrupted walking even while executing demanding sag mitigation

maneuvers.

• A technique to take advantage of the null space of ground contact forces to

improve saturation margins further was developed and tested in simulation. The

optimal force distribution is found by solving a constrained LP, with observed

improvements of up to 60%.

• A method for simultaneous calculation of contact forces and robot sag was de-

veloped. The new technique is valid for homogeneous or heterogeneous contact
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stiffnesses, and takes into account force redistribution during the lifting and

planting of feet.

The applicability of the optimization techniques extends beyond the realm of

walking gaits: since they operate on individual poses, they can be applied to other

motions executed by limbed robots, including climbing and manipulation. For exam-

ple, a limbed robot equipped with a drilling tool would experience torque variations

while using this tool, and an optimal drilling pose can be obtained by using the

techniques presented in this dissertation.

8.2 Lessons Learned

8.2.1 Benefit of Null Space

The use of the null space of forces was observed to produce significant reductions in

torque ratios, contrary to intuition. The reduction is achieved because the net contact

force is redirected relative to the critical joint of each leg.

8.2.2 Benefit of Simultaneous Steps

The analysis of gaits that use the vertical null space revealed that in some configura-

tions it is better to pick up two legs at the same time. This is a result of a more even

distribution of forces among the four legs that remain in contact with the ground.

8.2.3 Relation to Legged Robot Design

Robot design is an iterative process for which a number of tradeoffs must be carefully

considered. The work presented here showed that the analyzed gait could be executed

with only 40% of the original torques. This information is useful for the sizing of

electric motors during the robot design stage. The analysis can be repeated for a

number of possible gaits in order to determine suitable motors that work well in the

situations that the robot is expected to encounter.
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8.3 Future Work

8.3.1 Optimization Extensions

The focus of this research has been on preventing saturation with the largest margin

possible at every step. Analysis of the various torque ratio plots from Chapter 6

shows that not all moves along the gait come very close to saturation. For these

moves it might be desirable to aim for minimum power or maximum stability instead.

These competing objectives may be incorporated into the cost function with adequate

weights. The effect on the shape of the cost function and the possibility of local

minima would need to be evaluated in that case.

Another possible extension is to seek the best of all possible reference gaits by

searching over different step sequences and relaxing the assumption that only one

foot steps at a time and that these steps are always separated by a body shift.

8.3.2 Combined Walking and Rolling

The possibility of rollking as a mode of locomotion for wheel-in-leg robots was men-

tioned in Chapter 1. Little work has been done on motion planning, optimization

and control to enable rollking. The motion in this case would also be subject to

torque, power and stability constraints, so extending the techniques presented in this

dissertation to accommodate rollking would be a good avenue of research.

8.3.3 Dynamic Robots

A large fraction of the research on multi-legged robot locomotion is currently focused

on enabling higher speeds. Joint saturation is particularly dangerous for running

robots because it is likely to cause instability. Techniques similar to the ones presented

in this work would be useful for running robots.
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8.3.4 Footfall Planning

The techniques developed in this thesis assume the existence of a pre-planned ref-

erence gait, whose footfall locations must be preserved by the optimization. The

method used to design the reference gait is of no consequence to these optimization

techniques. However, the location of the reference footfalls does affect joint torques

because it determines to a certain extent the leg geometries and force distributions

throughout the motion.

Therefore, a benefit can also be obtained by focusing on a careful selection of the

initial footfalls (i.e. footfall planning), based on a metric of their impact on saturation.

Footfall planning is an active area of research for legged robots (e.g.[Hauser 08b]), but

the use of proximity to saturation as the main selection criterion has not been explored

so far. This would be a promising direction for future research.

8.4 Conclusion

The motion optimization techniques developed in this dissertation have enabled a

robot with severely limited actuators to walk successfully under demanding condi-

tions. The development of future robots and their gaits can build upon the tools

presented here to achieve safer walking and more efficient designs.



Appendix A

Single Step Motion Planning

The execution of each step for a legged robot requires solution of a motion planning

problem, particularly in environments with obstacles. This appendix compares four

possible motion planning approaches based on simulation and experimental work on

the ATHLETE robot.

§A.1 provides an overview of the Appendix.

§A.2 describes the four motion planning algorithms that were compared.

§A.3 explains the experimental setup for the motion planning comparisons.

§A.4 shows the comparison results.

§A.5 summarizes the findings of the experimental study.

A.1 Overview

This appendix describes and compares four different algorithms for generating a

single-step sequence of commands for legged robots. The material included here

is based on joint work with Dr. Tristan Smith of the Planning and Scheduling group

at NASA Ames Research Center. An extended version of this material was presented

at the 2009 SMC-IT Conference in Pasadena, California [Smith 09].

Three of the four algorithms search configuration space (“C-Space”). Each di-

mension in configuration space represents the range of angles for one of ATHLETE’s

joints. A path through configuration space represents a sequence of moves (changes

in joint angles) the robot can make to get from one configuration to another.
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The first algorithm only tries the straight line between the start and end config-

urations, the second is a standard randomized motion planning algorithm, and the

third is an A* search through a discretization of configuration space. The fourth and

final approach is A* search in task space, the three-dimensional Euclidean space in

which the robot operates.

A.2 Algorithms

A.2.1 Preliminaries

The goal for each of the algorithms is to produce a sequence of commands to move

an ATHLETE foot from one location to another. It is assumed that the position and

orientation of the chassis remain fixed, and therefore the configuration of the other

five legs can be ignored.1 This simplification means the planning problem is only

concerned with the six-dimensional configuration space representing the joint angles

shown in Figure A.1.

The location of the foot can be represented as either:

• A six-tuple in configuration space, ci, or

• A three-tuple in task space, xyzi.

In addition, the functions TO-TSPACE (ci, legj) and TO-CSPACE (xyzi, legj), are

available to convert between the two spaces via the forward or inverse kinematics of

the leg. While one location for the foot in task space, xyzi, could correspond to many

different configurations, the implementation of TO-CSPACE (xyzi, legj) used here is

one-to-one and always computes the same ci for a given xyzi.

Finally, a function COLLISION-FREE (ci, ci+1) is available that determines whether

the straight line in configuration space between ci and ci+1 is free of collisions; the

leg must not collide with itself, other parts of the robot, or the terrain.

As problem input, the following is assumed:

1Although it might be necessary in tight space to adjust other legs or the chassis in order to
reach a goal, such motions are considered part of multi-step walking and are not included here.
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Figure A.1: The joints on an ATHLETE leg.

• Terrain data. For the experiments presented here, it is auto-generated; in reality,

it would be acquired with ATHLETE’s 15 on-board cameras.

• The leg, legi, to move.

• Current position. This includes the location and orientation of the chassis, and

all six joint-angles for each leg. It is assumed that this represents a valid and

stable position on the terrain, and that ATHLETE will remain stable when legi

is lifted.

• A goal position in task space, xyzgoal, for legi.

Given this data, the start and goal configurations cstart and cgoal, are computed.

cstart is obtained by lifting legi 10cm above its current position, and cgoal is a configu-

ration 10cm above xyzgoal. These 10cm buffers are included because a weight-bearing

leg must be raised by about this much before it is truly free of the ground, due to the

way the chassis sags as the leg is lifted.

The goal for each algorithm is to produce a path (cstart, ..., cgoal) through config-

uration space such that each edge (ci, ci+1) is collision free. The solution path can

then be converted to a sequence of low-level commands, which move legi to cgoal.
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A.2.2 Straight Line Approach

The baseline algorithm, SMPL,2 simply calls COLLISION-FREE (cstart, cgoal). If the

straight line between cstart and cgoal has no collisions, it is returned as the solution

path. If not, the algorithm fails.

A.2.3 SBL

The second approach is a Single-query Bi-directional planner with Lazy collision

checking (SBL), and is outlined in Algorithm 2.

Algorithm 2

function SBL(cstart, cgoal)

1: T1.root = cstart

2: T2.root = cgoal

3: while not timed out do
4: Execute EXPAND-TREE
5: τ ← CONNECT-TREES
6: if τ is not empty then
7: Return success
8: end if
9: end while

10: Return failure

SBL is a sampling-based motion planning technique. The search for feasible paths

is conducted by sampling configurations between the start and goal, and verifying if

(a) they are feasible, and (b) they can be connected without collisions.

The algorithm proceeds by growing two C-Space trees T1 and T2 rooted at cstart

and cgoal toward each other. On every iteration one of the trees is selected at random

with probability 0.5, and a new milestone mnew is added to it (EXPAND-TREE

step). The planner then checks if a connection can be established between the trees

(CONNECT-TREES step), and if so it generates a candidate path τ from cstart to

cgoal. This path includes a segment called a bridge, connecting mnew to m, the nearest

2The abbreviation SMPL is used as shorthand for “Simple”.
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milestone in the opposite tree. If τ is found to be collision-free, success is returned.

Otherwise iterations continue until time-out, at which point failure is returned. This

means that either no path exists, or SBL was unable to find one.

The EXPAND-TREE step proceeds as follows: from the selected tree T, an exist-

ing milestone is selected at random with probability π(m), which is inversely propor-

tional to the density of milestones of T near m. Then, a collision-free configuration

is randomly selected within an adaptively-chosen distance of m, and is added to T as

the new milestone mnew. This selection strategy distributes the exploration around

areas reachable from the root configurations, and at the same time prevents over-

sampling. It should be noted that only mnew is checked for collisions at this stage,

not the segment connecting it to m. Segment checks are postponed until they are

absolutely necessary in the CONNECT-TREES step. This lazy approach has the

effect of reducing the total number of expensive collision checks.

The CONNECT-TREES step of SBL is executed when the distance between mnew

and m is smaller than or equal to the distance threshold. At this point the candidate

path τ is checked for collisions to a resolution ε by a TEST-PATH routine, and τ is

returned as the motion plan if it is collision-free; otherwise, iterations continue.

Further details on SBL can be found in the original paper by Sanchez and Latombe

[Sanchez 01].

A.2.4 A* Search in Configuration Space

The third approach, CFG uses A* search [Russell 09] through the six-dimensional

configuration space for legi. Each dimension is discretized into increments of r radians,

and a search is conducted over the resulting grid.

Algorithm 3 outlines the specifics of the approach.3 A queue of nodes is initialized

with a node representing the start configuration. Each node n in queue stores:

• n.g,the distance travelled to get there,

• n.h, an optimistic estimate of the distance to the goal, and

3A slightly modified version of the C++ implementation written by Justin Heyes-Jones:
http://www.geocities.com/jheyesjones/astar.html was used
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Algorithm 3

function AStar(start, goal)

1: start.g = 0
2: start.h = DISTANCE(start, goal)
3: start.parent = NULL
4: queue.ADD(start)
5: while n = GET-BEST-NODE(queue) and n not NULL and not timed out do
6: if n is goal then
7: Return success
8: end if
9: succs = GET-SUCCESSORS(n)

10: if n near goal then
11: succs.ADD(goal)
12: end if
13: for all s in succs do
14: s.g = n.g + DISTANCE(n, s)
15: s.h = DISTANCE(s, goal)
16: s.parent = n
17: queue.ADD(s)
18: end for
19: end while
20: Return failure
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• n.parent, the node from which n was generated.

At each step, the function GET-BEST-NODE returns the node n in queue for

which n.g + n.h is lowest.4 Then, n is expanded; GET-SUCCESSORS returns the

twelve grid nodes (obtained by moving left or right along each of the six dimensions)

adjacent to n, which are then added to queue with appropriate g and h values.5

When success is returned, the solution can easily be extracted because each node

stores its parent.

A.2.5 A* Search in Task Space

Finally, the fourth approach, TSK, uses A* search over a discretized grid in three-

dimensional task space. Each point xyzi represents a position of the foot (which then

has a corresponding point, TO-CSPACE(xyzi), in configuration space). Algorithm 3

is still used but GET-SUCCESSORS(n) returns the six grid nodes in task space

adjacent to n, and DISTANCE(ni, nj) computes three-dimensional Euclidean distance

rather than distance in configuration space. The function COLLISION-FREE still

checks the line between each pair of nodes in configuration space since the final

commands to the robot will be configuration space moves.

Task space search is probably the most intuitive approach, as one can picture the

wheel moving through the three-dimensional grid. In addition, the smaller branching

factor (6 instead of 12) means the search space is exponentially smaller than that of

CFG, which allows a much finer granularity to be used for the grid.6

The smaller search space is also a potential disadvantage of this approach. Recall

that function TO-CSPACE(xyzi, legj) is one-to-one, even though xyzi could map to

multiple configurations. Recall also that to check an edge (xyzi, xyzj) in task space,

4This order in which nodes are explored distinguishes A* search from other graph-search algo-
rithms, and ensures that the resulting solution will be optimal.

5In traditional A* search, GET-SUCCESSORS will only return a successor s if COLLISION-
FREE(n, s) passes. However, a lazy version of A* has been implemented, and is described further
in §A.2.6.

6For example, doubling the granularity increases the search space size by a factor of 8 for task
space, but by a factor of 64 for configuration space.
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collisions are still checked in configuration space, using COLLISION-FREE( TO-

CSPACE(xyzi),TO-CSPACE(xyzj)). This test might fail even if there exist other

valid configurations for xyzi and xyzj for which the edge is collision-free. Therefore,

there is the risk that this approach, even with very fine resolution, will fail to find

solutions that do exist. In effect, only a portion of the configuration space searched

by the other approaches is covered.

A.2.6 Optimization 1: Lazy A* Search

For the complex robot of interest in this work, the computationally expensive piece

of each A* implementation is the COLLISION-FREE function. This is different

than typical A* domains, where the computation of g and/or h are most expensive.

Therefore, a lazy version of Algorithm 3 has been implemented that changes two

aspects of typical A* search:

1. In typical A*, GET-SUCCESSORS only returns a neighbor s if COLLISION-

FREE(n, s) succeeds. The lazy A* returns all neighbors, and therefore avoids

calling COLLISION-FREE when a node is added.

2. As a result unreachable nodes are included in queue. Therefore, GET-BEST-

NODE(queue), instead of simply returning the top node n in queue, must call

COLLISION-FREE(n.parent, n); if this succeeds n can be returned; if it fails,

n is discarded, the next node in queue is considered, and so on.

This approach means there will be nodes n in queue that cannot be expanded

because the path from n’s parent has collisions. However, the same point in space

with a different parent might expand successfully. Therefore, unlike traditional A*,

it may be necessary to add a single point in space to queue multiple times; this can

only be avoided if the same point has been both added and successfully expanded.

As a result, it is not at all obvious that this lazy approach is a good idea. On

the one hand, unnecessary checking of edges to nodes that never end up getting

expanded is avoided. On the other hand, each point in space could have multiple

copies in queue, making the maintenance (especially sorting) of queue more difficult.
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In the worst case, where A* expands all nodes in queue before finding a solution, this

overhead certainly makes the lazy approach more expensive.

For the experiments described in §A.3, the lazy version of A* is an improvement.

In configuration space, between 1.3 and 9.7 (depending on the terrain) times more

nodes are added on average, while search times are reduced by 43 to 82 percent on

average. Similarly, in task space, between 1.2 and 4.8 times more nodes are added,

while search times are reduce by 25 to 70 percent. Nonetheless, lazy A* is not always

better; for 4 of the 958 instances considered, the lazy A* version of CFG times out

(and therefore fails) even though the standard implementation succeeds.

A.2.7 Optimization 2: Path Smoothing

Because SBL is a random algorithm, and returns the first valid path found, the result

can be a very inefficient and odd-looking step. For results to be acceptable to human

operators a post-processing algorithm to smooth the resulting path was developed.

A smoothing approach similar to the one proposed in [Amin 06] was chosen. The

implemented algorithm does the following:

1. Expand path into a graph by joining every pair (ci, cj) of vertices for which

COLLISION-FREE (ci, cj) succeeds.

2. Run Dijkstra search on this graph to find the shortest path from cstart to cgoal.

This has the effect of cutting off unnecessary corners in the original path.

3. Add vertices to path by bisecting each edge.

4. Repeat steps 1 through 3 until the improvement made in a given iteration is

less than 10%.

Smoothing is used to improve the paths returned by the A* algorithms as well;

although they return optimal paths along the discretized grids, there are usually

shorter paths that cut corners and pass diagonally through the grid. The smoothing

algorithm in configuration space is outlined in Figure A.2.
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Figure A.2: Path smoothing in a hypothetical 2D C-space: cstart and cgoal are separated
by a C-obstacle. (1) Motion plan with N1 nodes before smoothing; (2) shortest path
found using Dijkstra’s algorithm, with N2 ≤ N1 nodes; (3) the simplified path is bisected,
adding N2 − 1 nodes; (4) Dijkstra’s algorithm is re-run.

A.3 Experimental Setup

To compare algorithms, four different types of terrain were generated. For each, a set,

L, of representative points on the left side of the leg was selected, and a similar set, R,

on the right. Each possible pair, (li ∈ L, rj ∈ R), is then considered and stepping is

attempted both from li to rj and vice versa, resulting in |L| · |R| · 2 problem instances

for each terrain. The four terrains, three of which are shown in Figure A.3, are:

Figure A.3: The Bump, Step, and Well terrains used in the experiments.
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• Flat: Completely flat terrain (|L| = |R| = 11). This serves as a baseline.

• Bump: Terrain with a 40 cm bump between L and R (|L| = |R| = 14). This is

probably the most realistic terrain; stepping with ATHLETE is most likely to

be done over rocks in the lunar landscape.

• Step: Terrain with a 50 cm ledge; L is at the top of the ledge, and R is at the

base (|L| = 15, |R| = 6).

• Well: Terrain with two wheel-sized wells surrounded by raised terrain, where

L is in one well and R the other (|L| = 8, |R| = 9). This terrain attempts to

generate a difficult example that is quite different from the other terrains.

This results in a total of 958 problem instances. The algorithms were configured

as follows:

• Search fails if a solution is not found within 5 minutes.7

• Each A* approach was run with two granularities. CFG(1.0) and CFG(0.33)

use 1 radian and 0.333 radians,8 respectively, while TSK(0.2) and TSK(0.1) use

0.20 m and 0.10 m, respectively. Roughly speaking, the coarser granularity was

intended to make the search time comparable to SBL while the finer granularity

allows better answers to be found, but more slowly.

• The attempt is made to reach the goal node from a search node in A* (see

line 11 in Algorithm 3) if the distance to the goal is less than 2 radians in

configuration space, and 40 cm in task space.

• Since each run of SBL produces a different result, an average of the SBL results

over 10 runs for each problem instance is used.

7This seems like a long time to wait for a solution to a single step; that it has been acceptable in
practice points out how time-consuming the stepping process currently is.

8Note that the high dimensionality of configuration space forces us to use very coarse granularities
in this space; 1 radian is almost 60 degrees.
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A.4 Experimental Results

Figure A.4 shows the fraction of problem instances solved by each approach. As

expected, SMPL often fails and is not really a viable approach. Besides SMPL, there

are very few failures. SBL and TSK(0.1) succeed on every instance. TSK(0.2) fails

on 13 of the Bump instances. CFG(1.0) cannot solve 23 of the 144 Well instances

because no solution exists using the coarse grid, while CFG(0.33) times out on 4 of

the 180 Step instances.

Figure A.4: Success ratios.

Figure A.5 shows average runtimes. These are small on average, with SMPL

obviously the fastest, and the finer granularity searches taking generally the longest.

One notable exception is the case of the Well, where CFG(1.0) is the slowest al-

gorithm. This is almost certainly caused by an increase in the number of collision

checks required to find a sequence of large C-Space swings that can maneuver within

the constrained space of the well.

Figure A.6 shows the length of the resulting configuration space paths, before

and after smoothing.9 Surprisingly, although CFG(0.33) is best and TSK is worst

9For the rest of the results presented here, SMPL is excluded; because it only succeeds on the
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Figure A.5: Runtimes, split into search and smoothing times.

before smoothing, those results are almost completely negated by smoothing, with

SBL doing best for three of the four terrains. Smoothing also helps TSK become

competitive on this metric, although it still does poorly on the Bump terrain.

Figure A.7 shows the average distances in task space for each approach. Here,

TSK(0.1) is the clear winner, outperforming all other algorithms on all data sets,

before and after smoothing. Finally, Figure A.8 shows the maximum values for each

terrain, confirming that SBL and CFG(1.0) occasionally produced very long paths,

even after smoothing.

A.5 Conclusion

This appendix outlined four different algorithms for taking a step with ATHLETE.

Three approaches, SMPL, SBL, and CFG, search in configuration space while TSK

searches in task space. Each algorithm was tried on a total of 958 problem instances

spread across 4 types of terrain.

As expected SMPL is extremely fast, but untenable due to its high failure rate.

easiest instances, results for that algorithm are skewed.
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Figure A.6: Configuration space distances.

Figure A.7: Task space distances.

CFG produces short paths in configuration space, but suffers from the high dimen-

sionality of its search space; the fine-grained version can run for minutes on difficult

instances, while the faster version is too coarse to get good results.

SBL also runs quickly, but produces a wide range of path lengths in both configu-

ration and task spaces; these variances have been sufficiently eliminated by adequate

tuning of the post-SBL smoothing. TSK results are most consistent; the finer grained
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Figure A.8: Maximum distances in task space for each terrain.

version is the only approach other than SBL to solve all instances, runtimes are com-

parable to SBL, and configuration space distances are only slightly worse than other

methods. TSK consistently get the shortest task space distance, arguably the most

important metric.

The results of this work show that SBL with smoothing and TSK are comparable

approaches for the planning of steps with 6-DOF legs. All the experiments presented

in this dissertation were conducted using SBL with smoothing.
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