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Abstract— An outstanding question in research of central
pattern generators is whether CPGs can be used for whole
body control of a robot. Given the spine’s important role in
walking, including a robotic spine may be a prerequisite for
answering this question, but most current robots use rigid
torsos. Tensegrity offers exciting possibilities for future robotic
structures, as their continuous tension networks automatically
distribute forces. This property creates robust structures and
shows the potential to improve torsos of legged robots, and
may also provide mechanisms for distributed coordination of
motor patterns and entrainment with oscillatory controllers
such as CPGs. Our prior work with CPGs on tensegrity
structures allowed for some adaptations in rough terrain, but
without feedback success was limited with larger perturbations.
This work demonstrates a CPG controlled tensegrity spine
with locomotor capability on additional terrains by providing
feedback to the CPG.

I. INTRODUCTION

A primary goal of bio-robotics research is to impart robots
with the agile and adaptive behavior of animals. Computa-
tional models of central pattern generators (CPGs) provide a
basis for some of these behaviors, including gait transitions
[8], omni-directional locomotion [17], and adaptations to
rough terrain [5]. An outstanding question is whether these
behaviors can be extended to include whole body control of
a robot. However, this is difficult to answer without including
a robotic spine, since the spine contributes significantly to
locomotion and whole body behavior in vertebrates [3].
Adding a spine would add several new degrees of freedom
to most robots, which complicates control.

One solution is to utilize a compliant structure to simplify
the control signals, a concept known as morphological com-
putation [6]. Tensegrity structures, defined as discontinuous
compression elements suspended in a continuous tension
network [20], provide this compliant structure with a bio-
logical basis, and have been used to model systems ranging
from the cell’s cytoskeleton to the spine and shoulder girdle
[9], [12], [4] (for review see [18].) Tensegrity robots have
demonstrated crawling [15], [21], swimming [1], and rolling
locomotion [11], and have offered many more exciting
possibilities in simulation [13], [10].
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Fig. 1. One frame from the NTRT physics-based simulation showing a
tetrahedral complex spine crawling over a field of randomly placed blocks.

Control of tensegrity robots inherently requires whole
body coordination, since any action on the tension network
influences the entire structure. Controllers for tensegrity
robots tend to either be determined by evolutionary algo-
rithms [15], [10], or use central pattern generators [1], [21].
CPGs with entrainment to sensory signals have previously
been applied to a swimming tensegrity [1], and a rolling
tensegrity [2]. However, as Caluwaerts et al. discuss, the
sensory signals they used would be difficult to implement
in hardware. Open loop CPGs are, as expected, limited in
the types of terrain they can handle. This work examines a
preliminary step to control of whole body motion: a crawling
tensegrity spine, and uses feedback signals available to our
current hardware implementations for locomotion on rough
terrain in simulation.

II. CONTROL OF TENSEGRITY SPINES IN
SIMULATION

A. The NASA Tensegrity Robotics Toolkit

The NASA Tensegrity Robotics Toolkit (NTRT) is an open
source software package with modules for modeling, simulat-
ing, and controlling tensegrity robots'. NTRT uses the Bullet
Physics Engine’s (version 2.82) mixed linear complimentary
problem solvers for rigid body dynamics, and a custom
softbody spring-cable model with contact dynamics. The
internal dynamics of the spring-cable are an implementation
of a Hooke’s law linear spring, as presented in [2]. We
recently added contact dynamics to our cable model based on
work by Servin et al. [19]. Collisions are detected using ghost

nformation, source code, and documentation for NTRT can be found at
http://irg.arc.nasa.gov/tensegrity/ NTRT



objects within Bullet (the cable is represented as a small
cylinder), and the massless cable applies lateral forces to
objects based on the sum of the internal forces along length
the cable near the contact point. Motion capture tests of a
single flop performed by a six strut tensegrity robot validated
the rigid body and internal cable dynamics within 1.3% error
on position [2], hardware validation of the contact dynamics
is future work.

In addition to physics simulation, NTRT contains libraries
for controllers, including CPGs, machine learning, and low
level actuator dynamics.

B. Tensegrity Spine Model

The tensegrity spine used in this work is based on the
‘tetrahedral complex’ for vertebrae, which was originally
developed as a static model by Tom Flemons [4], and is
shown in Figure 1. The vertebrae consist of four rods that
meet at a central point, as if they were drawn from the
center of a tetrahedron to its verticies. When stacked in a
tension network, they make a stable yet flexibile column
through tetrahedral ‘saddle joints.” To create a tensegrity
robot, we assume all of the cables are individually actuated.
In hardware, actuation typically takes the form of a cable
wrapped around a spool on a rotary DC motor, as in [21],
[13]. We chose the tetrahedral complex because in prior
work it displayed the most efficient locomotion [13], and
upon additional tuning, displayed the fastest locomotion of
the morphologies we have examined so far. For this work
we used a six segment spine, to reduce the computational
time for contact dynamics and make the terrain features more
difficult compared to a longer spine. Each rod was assumed
to be 10 cm long, resulting in a 57.5 cm long robot.

C. Control Methods

To control the cables of the tensegrity spine, we use
a distributed formulation of impedance control. The first
formulation of impedance control was originally developed
for serial chain manipulators [7]. In its distributed form, the
equation becomes scalar, but provides control on both length
and tension [14], and tunable stiffness. The equation is as
follows:

T =Ty+ K(L— L)+ B(V - Vp) (1)

Where T is the tension setpoint sent to the motor’s PID
controller, Tj is a tension offset, K is a position gain on the
difference between the cable’s current actual length L and
desired length L(. B serves a similar function for V" and Vj,
where V) is a control input from the CPGs or sine waves (in
Orki et al.’s implementation Vj is always zero [14], [21]).

Each node of the CPG corresponds to one cable of the
tensegrity spine, for this case the CPG has 40 nodes. The
specific CPG equations we use are a combination of the
adaptive phase-coupled oscillator equations of Righetti et al.
[16] (feedback on the frequency) and Gay et al. [S] (feedback
on the amplitude and phase):

7 =y(Ri + k. F, — 1) 2

éi = w; + kQFe + Z rjwijsin(ﬂj — 91 — ¢zj) (3)
J
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where r; is the amplitude of the wave, w; is the frequency,
0; is the phase, and V; is the input to the impedance
controller. The amplitude is set by convergence parameter v,
and setpoint R;, the phase relates to connected nodes through
weight w;; and phase offset ¢;;. The terms k., kg, k., are
scalar gains on feedback functions Fi., Fjy, and F,,, which,
similar to [5], are the output of an artificial neural network.
In this case, the network’s inputs are the length and tension
of the cable for each respective CPG node. The network has
two nodes in the input layer, four in the hidden layer, and
three in the output layer. The same network is reused for
each cable and CPG node, providing sensory feedback.

To determine the connectivity of the CPG, we used
the same methods as our prior work, where each node is
connected to nodes that share a rigid body, based on their
respective cables [13]. In this case, with eight strings between
segments, nodes in *middle’ cable groups would connect to
23 other nodes, and those on the ’ends’ would connect to
15. Symmetry rules discussed in [13] are used to limit the
total number of parameters, in this case 205 are required to
specify the amplitude, frequency, weights, phase offsets, and
feedback parameters of the CPG.

D. Machine Learning

In order to determine a controller for rough terrain, we
tuned and tested the tensegrity spine on three types of terrain:
flat ground, sinusoidal hills with an amplitude of 2 cm, and a
field of 500 randomly placed blocks. The blocks were 5 cm
wide, 0.5 cm tall and were fixed to the ground within a 200
cm by 200 cm area around the origin. Trials were evaluated
according to distance traveled in 60 simulation seconds. If
multiple terrains were used, scores were averaged.

Given the large number of parameters, we started tuning
our system by selecting the best gaits for an open loop CPG
on flat ground from 24,000 Monte Carlo trials. The eight
best were selected for a Gaussian sampling hill climbing
optimization on all three terrains, where random samples are
taken from a narrow distribution around the best results. The
hill climbing step improved the results between 100% and
200% over Monte Carlo, but most of the improvement was on
flat ground, indicating the need for feedback to the CPG (the
feedback functions were zero during the preceding steps).

In order to adapt the CPG to varying terrains, we provided
feedback using an artificial neural network as described
in section II-C. To parameterize the network, we used a
genetic algorithm with crossover, mutation, and elitism. The
population consisted of 60 members, the best 15 of which
survived to the next generation. Fitness was again determined
by average score between the three terrain types (hills,
blocks, flat ground). Evolution for the feedback parameters
ran for 14 generations (1,935 trials), the CPG parameters
were held constant during these trials.



III. RESULTS

Once the feedback functions were tuned, we compared
the performance of the closed loop CPG controller to our
previous open loop configuration, impedance control was
used in both cases. Flat ground and hilly terrain results were
both deterministic, and are summarized in Table I, block
field results are summarized in Figure 2. While for this gait,
feedback slows locomotion on flat ground by about 1%, the
robot’s ability to handle rough terrain improves significantly.

TABLE I
RESULTS FROM DETERMINISTIC TERRAIN TYPES

[ Terrain [[ Without Feedback | With Feedback |
Flat Ground 492.8 [cm] 487.1 [cm]
2 cm Hills 30.4 [cm] 105.3 [cm]

To determine the robustness of these results, we set up
twenty different block fields using the same random seed and
tested the robot’s performance with and without feedback?.
Since the robot starts at the center of the square block field, if
it traveled at least 150 cm, it is guaranteed to have “escaped’
the block field. The controller with feedback moved further
than the open loop controller in all cases, and ’escaped’ in
17 out of 20 trials.

Performance in Block Field
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Fig. 2. Tests of locomotion on a random block field with and without
feedback at the CPG level, using the same random seed.

IV. CONCLUSIONS AND FUTURE WORK

These results indicate that (1) distributed, proprioceptive
feedback is sufficient to improve the performance of a CPG
controller on rough terrain, and (2) CPGs are a strong candi-
date for control of spine like tensegrity structures, and may
have potential for controlling whole body motions. Future
work will include feedback from contact sensors, heading
information for goal directed locomotion, explore schemes
for reduced actuators, and explore the role of tensegrity
spines in quadruped locomotion.

2Video: https://www.youtube.com/watch?v=94yqYPUYJHO
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