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Abstract— Tensegrity robots are composed of compression
elements (rods) that are connected via a network of tension
elements (cables). Tensegrity robots provide many advantages
over standard robots, such as compliance, robustness, and
flexibility. Moreover, sphere-shaped tensegrity robots can pro-
vide non-traditional modes of locomotion, such as rolling.
While they have advantageous physical properties, tensegrity
robots are hard to control because of their nonlinear dynamics
and oscillatory nature. In this paper, we present a robust,
distributed, and directional rolling algorithm, “flop and roll”.
The algorithm uses coevolution and exploits the distributed
nature and symmetry of the tensegrity structure.

We validate this algorithm using the NASA Tensegrity
Robotics Toolkit (NTRT) simulator, as well as the highly
accurate model of the physical SUPERBall being developped
under the NASA Innovative and Advanced Concepts (NIAC)
program. Flop and roll improves upon previous approaches in
that it provides rolling to a desired location. It is also robust to
both unexpected external forces and partial hardware failures.
Additionally, it handles variable terrain (hills up to 33% grade).
Finally, results are compatible with the hardware since the
algorithm relies on realistic sensing and actuation capabilities
of the SUPERBall.

I. INTRODUCTION

Tensegrity structures are composed of compression ele-
ments that are connected with a network of tension elements
(Figure 1). Since there are no bending or shear forces, these
structures are lightweight yet still capable of handling large
external forces. Using the network of tensions, any external
force is internally distributed via multiple load paths, which
avoids development of high-stress points. Considering the ad-
vantage of being lightweight and robust, tensegrity robotics
is both an exciting and recently developed research area.
In addition to structural advantages, tensegrity robots are
deformable and capable of different modes of locomotion,
such as crawling, hopping, and rolling.

The high strength-to-weight ratio and internal force distri-
bution makes tensegrity robots especially exciting for space
missions. Considering their flexibility, the same tensegrity
robot can act as a landing mechanism, and as an exploration
device. As a part of a recent NASA Innovative and Advanced
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Fig. 1. The tensegrity structure that is composed of 6 rods as compressional
elements and 24 muscles as tensional elements.

Concepts (NIAC) project [1], a recent study illustrates this
fact by analyzing possible behavior of an icosahedron tenseg-
rity robot (superball-bot) on a space mission to Saturn’s
moon, Titan, as a landing and exploration device [20].

In this concept, rolling locomotion is a critical research
area for tensegrities. Despite the advantages of tensegrities,
controlling a tensegrity robot is a fairly difficult problem.
Due to the nonlinear interaction of tensional elements, every
small change to a tensegrity robot affects the robot’s entire
structure, which makes it difficult to use established control
methods. Finding the right actions for a specific deformation
is already a difficult problem; moreover, figuring out the
correct deformations that will provide the rolling motion is
another challenge.

Previous work shows feasibility of rolling locomotion
with open loop signals and evolutionary algorithms, but the
approach provides a non-directional rolling behavior that is
prone to unexpected external forces or terrain conditions
[9]. In this work, we provide a learning based closed loop
controls algorithm that uses the contact sensor information
of the robot as the feedback. We first divide the problem
into simple flops that will optimize rolling behavior. We
combine this with policy pooling, a method that we develop
to take advantage of the symmetry of the structure. These two
methods combined with coevolutionary algorithms provide
a learning locomotion that steerable and robust to different
environment conditions.

To test the algorithm, we use the NASA Tensegrity
Robotics Toolkit (NTRT), a physics simulator based on a bul-
let physics engine that has been previously validated using an
actual tensegrity robot [4]. The model robot used in the sim-
ulations uses the same physical parameters (masses, inertias,
spring constants, etc.) from the engineering specifications
of the prototype SUPERBall currently under development

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6933-3/14/$31.00 ©2014 IEEE 2236



at NASA Ames Research Center [3].
The rest of the paper is organized as follows: section II

gives background about tensegrity structures and previous
research on tensegrity locomotion. Section III plots the
overall idea behind flop and roll. Section IV describes policy
pooling as a means to use distributed controllers and coevo-
lution while taking advantage of the connection patterns of
the tensegrity robot. Section V explains the coevolutionary
algorithms and fitness shaping that are used. Section VI gives
simulation results for different tests. Section VII presents
hardware under development, and section VIII ends the paper
with conclusions and future work.

II. BACKGROUND

The word ‘tensegrity’ comes from ‘tensional integrity’
[19]. The members are either pure tension or pure compres-
sion elements. The compression elements (rods or struts) are
connected via a network of prestressed tensional elements
(cables). Using this property, the structure is lightweight,
distributes external forces to its members, and none of the
parts encounter bending moment. Tensegrity structures were
initially explored by Buckminister Fuller [7] and Kenneth
Snelson [19] back in the 1960s. The tensegrity concept was
initially used in architechture, but it is also being discovered
in biological systems, from individual cells to mamalian
physiology [8], [13] . Emerging biomechanical theories are
shifting focus from bone-centric models to fascia-centric
models, where fascia is the connective tissues (muscles, lig-
aments, tendons, etc.). In the “bio-tensegrity” model, bones
are under compression and a continuous network of fascia
act as the primary load path for the body.

Being a fairly new concept, the studies for tensegrity
structures started with design and analysis of static structures
[2], [18], [11], then continued with form-finding techniques
[21], [14]. On the other hand, active control of tensegrity
robots brings significant challenges to the traditional control
methods due to the compliance, continuous tension network,
and nonlinear dynamics. Paul et al. introduced two tensegrity
robots that use crawling as the form of locomotion [15].
Recent studies show different approaches to the control
of tensegrities, such as Central Pattern Generators (CPGs)
and evolutionary algorithms [6], [22], [10]. For tensegrity
locomotion, there are multiple research directions, such
as biologically-inspired snake robots [22], using vibration,
oscillations, [16] and locomotion by rolling [12]. A recent
review shows that there are still many open problems in
actively controlling tensegrities [23]. In this work, we study
icosahedron tensegrity and rolling locomotion.

Icosahedron tensegrity is a simple and a popular tensegrity
model that is composed of 6 struts and 24 muscles (actively
controlled cables) (Figure 1). It has a spherical shape suitable
for rolling locomotion; it is easily deployable and good
at absorbing external forces. Due to these properties, it is
proposed in a recent NIAC project, “Superball-bot,” to per-
form both Entry, Descent, and Landing (EDL), and surface
exploration. The literature contains few actual deformable
icosahedron tensegrity robots with actuated muscles. For

example, ReCTeR is a lightweight tensegrity robot with addi-
tional actuated muscles that are connected to a passive shell
(24 passive; 6 active muscles)[5]. Currently, the Spherical
Underactuated Planetary Exploration Robot (SUPERBall) is
a modular tensegrity robot that is under development at
NASA Ames Research Center.

Previous research done with rolling locomotion of icosahe-
dron tensegrities contains tethered robots as well as simula-
tions. Shibata et al. investigates contact conditions and transi-
tions between them to move an icosahedron robot by deform-
ing its body [17]. Koizumi et al. uses a tethered robot with
pneumatic actuators and analyzes different surface patterns
required to roll [12]. In this paper, we develop a learning
based algorithm and analyze the resulting rolling behavior
instead of these transitions between different surfaces. In
our previous research, we used evolutionary algorithms and
sine waves to show to provide open loop rolling locomotion
by body deformation [9]. The presented algorithm was an
open-loop controller system combined with coevolutionary
algorithms. The resulting behavior was not controllable in a
desired direction, was highly sensitive to initial conditions,
and unable to handle external forces. Although it was proof
of concept of rolling for the SUPERBall robot, it cannot
be used as a navigation algorithm due to these problems.
Despraz et al. provided the first steerable tensegrity loco-
motion using CPGs [6]. The algorithm provides locomotion
by changing the center of mass of the structure by using
12 additional (36 total) muscles that connect an additional
payload located in the center of the robot.

In this work, we use the feedback from sensors as states
combined with learning. This approach provides the first
steerable rolling locomotion towards a desired direction using
the 24 muscles of the icosahedron tensegrity robot. The
algorithm is distributed and can handle different terrains or
external forces as shown in section VI.

To be able to work on control of tensegrities, NASA is
developing the NASA Tensegrity Robotics Toolkit (NTRT).
NTRT is a simulator based on the Bullet Physics Engine and
provides an enhanced and realistic model for muscles. NTRT
provides different models of tensegrities and controllers to
work with. As part of the development, the simulator was
validated with the actual ReCTeR robot and precise motion
capture. The results showed that the simulator can correctly
simulate tensegrity structures within a small margin of error
[4]. In our work, we are interested in the rolling locomotion
of spherical tensegrities, concentrated on the icosahedron
tensegrity SUPERball. We use NTRT and a tensegrity model
compliant with the physical specifications of the SUPERball
(length, weight, spring constants, etc.) [3].

III. FLOP AND ROLL

Rolling as a means of locomotion has many advantages.
First, it uses gravity to its own advantage as the main driving
force. In addition, this locomotion does not have balancing
issues. Considering tensegrity structures with a near spherical
shape, it is the most natural way to move.

2237



On the other hand, the locomotion algorithm to roll for
a tensegrity robot is not trivial. The structure has to deform
itself by changing the lengths of the actuated muscles to
create any motion. Finding the right configuration to create
motion in a direction is already a hard problem, it consists
of 24 interconnected elements that all affect each other,
resulting in a nonlinear system. Compared to deformation,
figuring out continuous and smooth rolling adds inertia as
a component to the problem, which creates another level of
complexity.

The first step that we take is to divide the problem of
rolling into consecutive flops. Considering that the structure
is stable on one of its surfaces, we define ‘a flop’ as
deforming the structure and falling to one side only to end up
lying on another surface. Doing one flop towards the target
will move the robot towards the flop direction and change its
orientation. Following the same routine over and over will
end up moving the tensegrity robot in the desired direction.
Learning to do a single flop in a desired direction is a simpler
problem than learning smooth rolling. Unlike the previous
approach of learning to roll, what the robot optimizes is a
simple ‘flop’ behavior with the help of feedback from its
sensors.

On the other hand, learning a single flop and repeating it
does not necessarily provide a smooth rolling locomotion. As
an analogy, the difference is similar to the difference between
repeating the routine ‘one step forward and stop’ and smooth
walking. During smooth walking, steps taken are optimized
for consecutive steps and they differ from taking one single
step forward. To avoid such a difference, we chose our fitness
function to evaluate overall rolling. During the evolution of
policies, the policy that we evaluate makes a single flop, but
these single flops will evolve according to their success when
they are executed consecutively over 60 seconds. With the
same analogy of walking, we evolve the robot to learn how
to make a step, but the policy to perform each step is evolved
so that it will maximize the walking behavior when executed
over and over. The details of the learning algorithm and the
state and the fitness function will be explained in section V

The first advantage of the approach that we take is making
the control policy simpler (single flop), while learning a
more complex behavior (smooth rolling). Additionally, the
algorithm can handle external and unexpected forces during
rolling motion. This robustness is mainly provided by the
fact that the algorithm is composed of smaller pieces to make
each flop as opposed to previous research that provides the
whole rolling sequence on a given surface [9]. Let’s imagine
a tensegrity robot that encounters a large external force while
rolling using “flop and roll” towards a target point. The
external force applied will break the sequence of flops for
the robot, and the robot will end up in a random orientation.
Since the robot has a spherical and symmetrical nature, it
will land on one of its faces. The robot then executes the
algorithm in the new orientation, and will deform itself to
undertake the first flop that will be followed by a rolling
behavior towards the desired target point.

Finally, we test the robustness of the algorithm with an

Fig. 2. Possible bases and flops for an icosahedron tensegrity robot.
There are two types of possible base triangles when the robot is balanced:
an equilateral triangle (left) or an isoceles triangle (right). For the first
configuration (left), there are three possible flops (over AB, BC, or CA).
For the second configuration, there are two possible flops (over DE and EF).
We do not consider the flop over DF since it requires lot more deformation.

environment where executing a flop is harder due to different
terrain properties or external forces. As learned, the robot
will try to execute the single flop until it lands on a different
surface. The algorithm considers itself at the same state and
works on completing the flop until it succeeds. This property
allows the algorithm to work on uneven terrains, hills, small
obstacles, and unexpected external forces as shown in the
results in section VI.

IV. DISTRIBUTED CONTROLS VIA POOLING

We first discuss how to control the robot using distributed
controls while still taking advantage of the symmetrical na-
ture of the structure. The ideal control algorithm for the robot
provides rolling motion that is steerable in a desired direction
and robust to external forces. This is the main significance of
the rolling algorithm that we present in our paper. In terms
of input, the algorithm takes sensor information from the
robot. Traditionally, robots are equipped with many different
sensors, such as cameras and infrared sensors. We will use
the minimal information, such as pressure or contact sensors,
at the end of the rods and the desired direction.

The robot has 24 muscles that are controlled by 24
independent controllers. Each controller is responsible for
selecting the desired length for the muscle that they control.
One important point here is that the algorithm does not
directly control the lengths of the muscles at a given time.
Since the algorithm is based on simple flops for the robot, the
lengths provided are the desired lengths for the muscles, so
that when reached to the configuration, the structure will flop
and start rolling. This particular point makes the algorithm
time-independent.

The actual lengths of the muscles at a particular time
depends on the speed of the motors and previous configura-
tion, but the algorithm still works with slower motors since
reaching the desired configuration will make the tensegrity
flop. This fact is also supported with experimental results in
section VI. Another advantage of time-independency is that
the controllers do not need to have precise synchronization.
The robot can tolerate latency in coordination and will still
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perform the flop.
At each moment, the robot has a state (contact points

and goal direction), the controllers (24 total) and actions to
choose (preferred lengths). The goal of the algorithm is to
provide rolling behavior that is composed of single flops as
explained in section III. The set of policies are defined as

πx : (φ, υ) → (lx)|x ∈ {1, 2, .., 24}

where φ is the contact points and υ is the desired direction,
and lx is the desired length for the muscle x. Now we will
reduce the complexity of the policies to learn by what we call
‘pooling’, which takes advantage of the symmetrical nature-
repetitive pattern of the tensegrity structures.

Let’s first analyze the stable configurations for the robot in
its default configuration (equal lengths for all the muscles).
When the structure will be stable on a surface, it will
have 3 points of contact forming the base triangle. Here,
we use this advantage for discretization of the state space.
Instead of having the orientation of the structure, we use the
base triangle that the structure is lying on. For the desired
direction, we use the sides of the base triangle, which gives
us 3 possible values. We define the new state variables as:

s : (XY Z, d),

where X, Y, and Z represent the edges of the base triangle
and d takes values of 0, 1 or 2 (XY, YZ, or ZX), representing
the side of the triangle that encapsulates the desired direction
to roll.

There are twenty possible surfaces for the icosahedron
robot. Since tensegrity robots have repetitive patterns, there
are only two types of base triangles: an equilateral triangle
where all 3 nodes are connected, or an isosceles triangle
where only two of the sides are connected. Figure 2 shows
the only two types of possible base configurations. Out of
twenty triangle surfaces, eight of them are equilateral (Figure
2 - left) and twelve of them are iscoceles triangles (Figure 2
- right). At any one of these stable situations, the goal of the
controllers is to make the robot flop on one of the sides of
the triangle. The possibilities are sides AB, BC, and CA on
the left of Figure 2 and DE and EF on the right of Figure
2. We do not consider flopping over DF, because not only is
DF not connected, it is impossible to perform that flop with
a small deformation, since the projection of the center of
mass of the structure is much closer to point E, as opposed
to the edge DF.

Let’s assume that all the controllers have the policy to flop
in a given state of ABC,AB. It can be seen that the structure
is symmetrical for all 3 sides (Rotating 120 degrees around
a gravitational axis will give the exact same structure).
Moreover, if the structure is lying on any other equilateral
triangles, we will see the same pattern of connections. This
resemblance lets us reuse the knowledge of the policies for
state ABC,AB for every equilateral base, and DEF,DE
for every isosceles triangle. The idea is similar transfer
learning. We do not directly copy the knowledge, but the
policies that perform these flops are reused for flops in all
possible orientations.

Fig. 3. The decision flow for each agent in Flop and Roll. The pool of
policies is same for all the agents, and the decision of policies is done
according to the state.

To reuse the knowledge gathered, we use a virtual pool of
policies, assuming that all the learned policies (π1, .., π24)
for those particular states (ABC,AB and DEF,DE) are
available to all of the controllers. In a new state s′ , we only
need a function F that returns the policy that each controller
select from the pool so that the desired flop will happen.

F : (s, i) → (jπ),

where s is the state, i is the unique ID of the controller, and
jπ is the ID of the policy that the the controller i should pick
from the pool. Figure 3 illustrates the agents on the left side.
These agents are used for each of the muscles to perform
rolling, and the pool of all the agents is updated at the end
of rolling. Please note that the given method is not specific
to our robot, F can easily be designed or discovered using
the repetitive nature of tensegrity structures. Using pooling,
we now reduced the complexity of the problem to learn to 24
policies with only two different states. 24 policies combined
with the pooling function F will provide the capability to
flop in every possible orientation.

An alternative explanation to this pooling mechanism uses
‘roles.’ Depending on the new state, each controller selects
one of the 24 roles. For example, the controllers of the
base muscles in current condition will select the roles of the
muscles AB, BC, and CD. The policies in the pool actually
represent what to do for that specific role to make a flop.
This selection function F , is hand-coded according to the
structure, but the policies for the roles are learned using
coeovolutionary algorithms, as we explain in section V.

Sharing a pool of policies gives the impression of exces-
sive communication. Yet, there is no active communication
during rolling. The policies to use are decided before each
episode, and they are not updated during each trial of
rolling. Since we use evolutionary algorithms (section V),
and delayed fitness assignment, the policies are only updated
before each episode. The only time that controllers have to
communicate is before starting an experiment, to make sure
that their pool is synchronized. Once it is synchronized, the
robot can start the experiment and roll without the need of
communication for policies. A small amount of communica-
tion is used to make sure all the agents figure out and learn
the current state. The state is basically a binary value of
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a pressure sensor for each node (twelve bits total), and this
communication is not sensitive to timing as discussed earlier.
It is also possible to derive the state without communication
(i.e., using tension sensors, proximity sensors, etc.), but we
leave that for future research.

V. LEARNING TO ROLL VIA FLOPS

Pooling (section IV) reduced the problem to learn to flop
with 24 agents in two possible states. On the other hand, the
higher-level function to learn is to roll. We will learn the
pool of policies, where each policy controls one muscle of
the robot for a specific orientation. We use coevolutionary
algorithms since they are more suited to the distributed nature
of the problem.

Evolutionary algorithms consist of the cycle of forming
new members, assigning fitness, and selecting the most fit
members. This cycle is called generation and it is repeated
until desired behavior is obtained. In coevolution particularly,
each one of the 24 policies has its own population. Each of
these populations evolve separately, but the policies have to
form a team for fitness assignment, because the task needs
cooperation of policies to maximize the rolling behavior. At
each experiment, one policy from each population is chosen
randomly to form a team. This set of policies forms the pool
for that experiment.

The problem is episodic, the agents have 60 seconds to
test the policies in the pool. At the start of the episode all
the agents copy the pool to minimize communication during
rolling. At each state s, each agent calls the function F (s, i)
to select the policy πj from the pool. Then agents use the
policy until the state changes to a different state, meaning
that the structure performed one flop and ended up on another
surface.

At the end of each episode, all of the policies forming
that team are evaluated according to the performance of the
whole robot after 60 seconds. The global fitness function
is the distance covered towards the desired goal point. Once
again, fitness is not related to the flops, it is only related to the
overall rolling. Although it is possible to evaluate all these
policies with the same fitness function (distance traveled), a
better fitness assignment can evaluate each policy according
to their contribution to the overall performance. The method
of providing different fitness assignments for each agent is
called fitness shaping. In this work, we use historical average
fitness-shaping that is previously used with tensegrity robots
with success [9]. In the historical average, each policy in
the pool shapes the global fitness according to its previous
experience by taking the average of all the teams that it has
been previously tested with.

For each generation, we test the individuals using their
performances with different teams. To form teams we use
random sampling. 50 random teams are formed and the
members are assigned fitness according to these experiments.
After 50 experiments, each population eliminates half of its
members to keep the most fit ones. These selected members
form new members by mutation.
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Fig. 4. The performance of the best policies over time during the
learning process. Flop and roll is compared to the non-directional sine wave
approach. Flop and roll learns directional rolling behavior in a short amount
of time.

VI. RESULTS

In this section, we present the results of the experiments
that we conduct using NTRT. As stated in section II, NTRT
has been previously validated with a physical tensegrity
robot and has been shown to produce less than 1% error
for a passive tensegrity and for semi-static controls of the
active tensegrity robot used. In our experiments, each strut
is 1.5m in length, 3 kg in weight, and the same as in the
specifications of the SUPERball design. We used 24 active
muscles controlled by 24 controllers, where the muscles have
a rate of change in length of 0.3 m/s, and the elasticity
coefficient for the muscles is 3kN/m.

The first experiment is to learn to roll using the algorithm
‘flop and roll,’ as described in previous sections. We compare
it to the sine wave rolling algorithm that was previously
presented in [9] and discussed in section II. First, flop and
roll is a method for learning to roll towards a goal; on the
other hand, the sine wave approach that we compare it to is
a less-capable algorithm that provides uncontrollable rolling
motion in one direction. To be fair on the sine wave approach,
we compare the distance traveled in any direction by the sine
wave approach vs. the distance traveled towards the goal
using flop and roll.

Figure 4 shows that the flop and roll algorithm actually
takes less time to learn and perform better. The flop and
roll algorithm takes advantage of the reuse of knowledge
and has a learning curve with a jumpstart. Flop and roll
learns a basic rolling behavior in a few generations, and it
reaches rolling with a speed of 60 meters per minute towards
a desired direction.

In this figure, the result of the previous sine wave approach
is slightly different than the original result that was published
in 2013. Since the publication of the sine wave algorithm,
the realism of the simulation environment is increased using
improvements that are made on NTRT. Moreover, in this
work, the specifications of the tensegrity model is closer to
the prototype that is currently under development [3]. In this
work, we are testing the two algorithms in a more realistic
environment with a robot that is harder to control.

Second, we analyze the learned rolling behavior. We take
the best policy and test it with 3 consecutive targets. Figure
5 shows the targets and the path of the center of the robot.
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The robot successfully navigates to all of the targets. The
zig-zag behavior that is observed is due to the fact that the
robot does not have a perfect spherical shape, it falls on two
sides in order to roll.

As part of the same experiment, we analyze the lengths
and tensions of the muscles during this navigation. These
results are a keypoint for the applicability of the algorithm,
because we have to make sure that resulting behavior does
not require an unrealistic amount of tensions or deformations
on the muscles. Figure 6 shows that the stationary robot (first
2 seconds) has 50N of average tension and 100 N maximum
tension. During the rolling motion (after 2 seconds), the
maximum tension is around 180N, with the average around
100 N. The graphs shows two peaks around 30 and 45
seconds. These peaks are due to righ-turning when the robot
reaches target 1 and 2. Even in those cases, the tensions
stay below 300N. These numbers gives an idea about the
applicability of the algorithm to the physical robot.

If we look at the lengths of the muscles, Figure 7 shows
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Fig. 8. The 2D path followed by the robot with two intense unexpected
external forces. The robot is basically smashed with an impulse that causes
the robot to roll outside its path. After stabilization, the robot starts rolling
to its target.

the pattern used for one of the muscles. Since rolling is
a repeating behavior, the same pattern repeats itself until
the robot changes direction. During this first phase, the rest
length of that muscle oscillates between 0.8m and 1.05m.
The actual length of the muscles (since they are elastic)
is slightly higher then the rest length, which provides the
tension analyzed in the previous graph. When the robot starts
moving towards target 2 (around the 30’s), the direction of
rolling is different and the same muscle has a different role
in the rolling locomotion. It is shorter and oscillates around
the 0.7 - 0.85m range. The third phase is completely different
and it can be seen that the pattern is different once again.

To test how the learned behavior handles an unexpected
external force, Figure 8 shows the path of the robot when
it is pushed sideways (twice) during the rolling motion. The
robot smashed by the impulse rolls sideways but stabilizes
and starts rolling towards its target again.

Next, we test the ability of the algorithm to overcome
a terrain with different types of hills. After learning using
maps with randomly-generated hills, we take the best policy
and analyze its performance. The robot can continuously
climb an inclined uniform terrain with a 20% grade (not
pictured). In terms of nonuniform terrain with small random
hills, Figure 9 shows a 3D graph of the path of the robot
with learned behavior. The robot climbs over small hills
with grades of up to 33%. As a comparison, these hills have
similar grades to the steepest streets of San Francisco.

Our next tests are about the applicability and robustness
of the learned behavior. We first test the algorithm with
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slower motor speeds. We train the robot using the default
configuration of simple motors models with a constant speed
of 0.2m/s independent of the load. We take the best policy
and test it with motors as slow as 0.02m/s. Figure 10 shows
that the robot can still move in the desired direction. The
learned behavior does not necessarily require fast motors.
The slower motors mean slower rolling, but we obtained a
distributed rolling algorithm independent of motor speeds.
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Fig. 10. Flop and roll tested with slower motor speeds. Even if it is trained
with a robot that has motors with 0.2 m/s speed, it can still roll with slower
motors.
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Fig. 11. Flop and roll tested with non-functioning controllers and broken
muscles. With one controller not functioning, the robot still rolls close to
its original performance. When one of the muscles breaks completely (does
not exist anymore) and symmetry is broken, the robot can perform rolling
when it is trained for breakage of one random muscle.

The last set of experiments test the algorithm against
hardware failures. We compare standard conditions with
broken controls and broken muscle. In the first scenario, we
disable the controller, meaning that one randomly chosen
muscle becomes stuck with the initial length. In the second
scenario, we break one randomly chosen muscle assuming
that the cable does not exist anymore. Figure 11 shows
that if one of the controllers stops working, the structure

can still roll successfully. Imagine a legged robot where the
controller of one of the joints stops working. The algorithm
for running will be highly affected by this failure. In our case,
the distance covered by the robot in 60 seconds decreases
from 55 to 50m. For the case of the broken muscle, one
random part of the structure will be affected by destroyed
cable causing the robot to be deformed and to lose symmetry.
In this case, the learned algorithm is highly affected. On the
other hand, the fourth column shows that if we train the
algorithm for such cases, we can obtain a rolling behavior
that is prone to broken muscles. Please note that during
training the broken muscle is selected randomly so that the
algorithm can be prone to failure for any of the 24 muscles.

VII. HARDWARE IMPLEMENTATION

Recent research includes examples of different tensegrity
robots as discussed in section II. The flop and roll algorithm
presented in this paper aims the tensegrity robots with a
spherical shape, untethered, and which actuate by changing
the lengths of muscles. The current robot with these capabil-
ities is the ReCTeR (Figure 12 - left). ReCTeR has 6 motors,
multiple sensors with a strut length of 1m and a total mass
of 1.1kg including batteries. On the other hand, ReCTeR is a
lightweight version with a passive outer shell and is actuated
using 6 additional active muscles that connect with the outer
shell. ReCTeR was used in different research studies and
also to validate the NTRT simulator where results showed
that the simulator matched ReCTeR with a small error.

The main target for flop and roll is the SUPERBall that
is designed to include the lessons learned with ReCTeR. A
new model SUPERball is currently under development at
NASA Ames Research Center. Figure 12 , on the right side,
shows one strut from the current design of the SUPERball, a
modular tensegrity robot that can actuate the outer shell. The
design specifications of both robots is given in table I. The
final design of the SUPERball will be capable of being used
in entry, descent, and landing and with surface mobility for
space projects. The specifications of the robot that are used
in this paper (length, weight) match the current development
of the SUPERball that is explained in [3].

VIII. CONCLUSION AND FUTURE WORK

We presented the flop and roll algorithm as the first
distributed directional rolling algorithm for tensegrity robots.
Flop and roll takes advantage of the pattern of the tensegrity
robot and performs knowledge reuse by pooling. Knowledge
reuse simplifies the policies dramatically, and the policies
are optimized using coevolutionary algorithms and fitness-
shaping. During coevolutionary algorithms, the policies to
make the robot flop are optimized according to their overall
rolling performance. Although the policies’ job is to provide
repeated flops, their fitness function provides the smooth and
robust rolling behavior.

We used the NTRT simulator to train and test our al-
gorithm. We analyzed the learned behavior and looked at
its performance under a flat surface, with consecutive tar-
gets, and with terrain that included hills. Our results show
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Fig. 12. Tensegrity robots used in this work. ReCTeR (left) is an untethered
tensegrity icosahedron robot. The strut (right) belongs to the SUPERball, a
modular tensegrity robot that is under development at NASA Ames Research
Center.

TABLE I
SUPERBALL DESIGN REQUIREMENTS

.

lstrut ∆l kpassive Ctrl. freq. max τ
ReCTeR 1m 0.3m/s 28.4N/m 40Hz 0.03Nm

SUPERball 1.5m 0.26m/s 500N/m 100Hz 3Nm

successful rolling under different conditions with reasonable
muscle lengths and tension values. Combined with the robust
and distributed nature of tensegrities, we show that the robot
can handle disabled and broken muscles. Moreover, since
tensegrity robots are known for handling external forces
very well, one can throw the robot in any direction and the
robot can survive the impact and can still follow its target.
A previous study shows that NTRT gives similar results
simulating semi static behavior of tensegrity robots [4]. The
algorithm that we present in this paper contains minimal
amount of assumptions about the hardware (slower position
control and contact sensors). Therefore similar results should
be observed upon application to the hardware.

Rolling tensegrity locomotion provides many advantages
over other forms of locomotion. By the tensegrity principle,
the locomotion is distributed and more robust to failures.
The spherical shape eliminates the the balancing problem
that legged locomotion encounter. The simulated robot rolls
on its 12 endcaps, while using a symmetrical gait. Additional
advantages of such a gait are being less sensitive to different
motors speeds and terrain conditions. In terms of energy
consumption, the rolling locomotion uses mass and gravity
to its advantage. Although we did not show the energy
consumption of the robot in this paper, investigation and
optimization of energy efficiency is left as a future work.

The next step for this research is the application of flop
and roll with the superballbot that is under development. Flop
and roll is a relatively easy algorithm to apply to hardware.

It uses a small amount of information (contact sensors),
is suitable for different configurations, can handle different
terrain conditions and external forces, and its distributed
nature can handle failures.
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