
FootFall: A Ground Based Operations Toolset Enabling
Walking for the ATHLETE Rover

Vytas SunSpiral*

NASA Ames Research Center, Moffett Field, CA, 94035, USA

Daniel Chavez-Clemente†

Stanford University, Stanford, CA, 94305, USA

Michael Broxton‡, Leslie Keely§

NASA Ames Research Center, Moffett Field, CA, 94035, USA

Patrick Mihelich**

Willow Garage, Inc, Menlo Park, CA, 94025, USA

David Mittman††, Curtis Collins‡‡

NASA Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, 91109, USA

The ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer) vehicle consists of
six identical, six degree of freedom limbs. FootFall is a ground tool for ATHLETE intended
to provide an operator with integrated situational awareness, terrain reconstruction,
stability and safety analysis, motion planning, and decision support capabilities to enable the
efficient generation of flight software command sequences for walking. FootFall has been
under development at NASA Ames for the last year, and having accomplished the initial
integration, it is being used to generate command sequences for single footfalls. In this
paper, the architecture of FootFall in its current state will be presented, results from the
recent Human Robotic Systems Project’s Integrated Field Test (Moses Lake, Washington,
June, 2008) will be discussed, and future plans for extending the capabilities of FootFall to
enable ATHLETE to walk across a boulder field in real time will be described.

American Institute of Aeronautics and Astronautics

092407

1

I. Introduction
ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial

Explorer) is a large (3 meters in diameter) six-legged robot
developed at the Jet Propulsion Laboratory (Fig. 1).
ATHLETE is a flexible platform designed to serve multiple
roles during manned and unmanned missions to the moon,
including transportation, construction and exploration.
ATHLETE is to be operated by personnel on Earth or by
astronauts on the Moon either located inside a habitat
shirtsleeve environment or outside the habitat in spacesuits.

In the two years since prototype third-scale ATHLETE
robots became operational, a wide array of capabilities have
been demonstrated.1,2 ATHLETE can roll on smooth terrain, Figure 1. ATHLETE walking on rough terrain

* Robotics Researcher, Carnegie Mellon University, NASA Ames, M/S 269-3, Vytas.Sunspiral@nasa.gov
† PhD Candidate, Aerospace Robotics Laboratory, Durand Building Rm 017, dchavez@stanford.edu
‡ Robotics Researcher, Carnegie Mellon University, NASA Ames, M/S 269-3, Michael.Broxton@nasa.gov
§ Computer Engineer, Code TI, NASA Ames, M/S 269-3, Leslie.Keely@nasa.gov
** Software Engineer, 68 Willow Road, mihelich@willowgarage.com
†† Sr. Member of Technical Staff, Planning Software Systems, Mail Stop 301-250D, David.S.Mittman@jpl.nasa.gov
‡‡ Member of Technical Staff, Mobility and Robotic Systems, Mail Stop 82-105, Curtis.L.Collins@jpl.nasa.gov

combine walking with rolling to traverse uneven terrain and even climb ledges. It can manipulate tools, rappel down
a steep slope, and coordinate with other robots. All of these activities involve sequences of commands selected by
human operators with limited software aid. Rolling can be commanded efficiently because a single command can
direct the robot to travel long distances. If commanded, active compliance can be enforced when rolling; this means
the robot will keep its chassis level and wheels coordinated while rolling over uneven ground. However, when
stepping is involved, active compliance of the robot’s posture is not currently available and low level joint space and
task space motion commands must be sent, making operation tedious.

The goal of this project is to make ATHLETE operation safer, faster, and more efficient by developing a
decision support ground tool (the FootFall software) capable of generating sequences of commands for stepping and
walking, along with any required on-board software. The multi-year goal is to enable ATHLETE to traverse
complex boulder fields, steep slopes, and ledges. FootFall takes telemetry from the robot, such as joint angles and
stereo camera image pairs, and generates 3D terrain maps colored by stability and reachability metrics to provide
walking-specific situational awareness to the operator. The operator may inspect a model of the robot within the
reconstructed terrain using Viz, a fully integrated 3D terrain and robot modeling system. The current FootFall
system is designed to plan leg motions for a single leg step at a time, with extensions to multi-step planning under
development. Once the operator chooses the next location to move a leg, a motion planner computes a collision free
path to the location that respects kinematics and safety constraints. The output is a sequence of flight software
commands that can be visualized and modified before being sent to the robot.

In the rest of this section we will give an overview of the ATHLETE robot itself, and review other walking
robots. Section II will cover the architecture and details of the FootFall system. Section III will discuss the results
from NASA’s recent Human and Robotic Systems Integrated Robotics Field Test held at Moses Lake, Washington,
June 2008, and will include a discussion of open issues and plans for future work. Finally, we will provide some
high level insights gained from this effort in the conclusion (Section IV).

A. Overview of the ATHLETE Robot
ATHLETE is a technology development project managed

by NASA’s Jet Propulsion Laboratory in California (JPL).
ATHLETE is capable of rolling over relatively flat terrain and
“walking” over extremely rough or steep terrain. The current
ATHLETE vehicle is able to travel at speeds of 3 km/h, climb
vertical steps of 1.7 m, and carry payloads of up to 300 kg.
Additionally, ATHLETE can fold into a flat ring, allowing for
easier transport to the lunar surface.

The ATHLETE vehicle, shown in Figures 1 and 2,
consists of six identical six-degree-of-freedom limbs.
Attached to the end of each limb is a wheel that can be used
for mobility in the form of driving over benign terrain.
Alternatively, the wheels can be locked rotationally so that the
limbs can be used for walking over rough terrain. The rover
body is shaped as a hexagon, giving six flat faces that can be
used to dock to similar ATHLETE vehicles, or to other systems such as refueling stations, rappelling winches, etc.
One unique advantage of the wheel-on-leg ATHLETE concept is that it combines the high mobility of legged
vehicles with the energy efficiency of wheeled vehicles.

For sensing its environment, ATHLETE has a number of stereo camera pairs. Each face of the hexagon has a
pair (NavCams) that provides the long distance views required for driving. There are three more pairs (HazCams)
mounted on the inner vertices of the hex that give visibility to the area below the robot and between the legs. Finally,
some of the legs have cameras mounted above the wheels (ToolCams) that are designed to assist with the
deployment and use of tools. For the purposes of walking, we mainly rely upon the HazCams because the NavCams
do not see the ground within reach of the legs. Other sensors on the vehicle include an IMU for pose recovery, and
dual absolute and relative encoders on all the joints, which enable the calculation of torques.3

Figure 2. Athlete at the Moses Lake Field
Test, carrying a mock habitat

B. Related Work
The control and planning for legged walking robots is an extremely active field where research can be generally

grouped into two categories: dynamically controlled robots, and statically stable robots. A large body of the current
research efforts are focused on dynamically controlled robots,4,5 where the center of gravity (CG) is allowed to move
outside of the polygon of ground contacts. This approach, which uses closed loop controllers to dynamically react to

American Institute of Aeronautics and Astronautics

092407

2

experienced forces and positions, has lead to the success of well-known robots such as BigDog,6 which is capable of
recovering its balance after slipping on ice. Implementing such a controller requires modeling the dynamics of
individual motors and power systems,7 and having an actuation system with a power to weight ratio capable of
generating the instantaneous forces necessary to bring the CG back into the support polygon. Many of these systems
rely upon high-pressure hydraulic actuators, which are unlikely to be used in a vacuum due to the potential for leaks
in the pressure system. ATHLETE uses highly geared energy efficient motors, and as a result cannot produce the
instantaneous power outputs required for dynamic control approaches. Instead, ATHLETE is a statically stable
robot, where the CG is always maintained within the support polygon.

Many statically stable robots have been built,8 as their design and control is better understood than dynamically
stable robots. Of course, most of these robots have not left the labs, or at least highly controlled environments. Of
the few that have been deployed into natural unstructured terrains, possibly the most famous is Dante II,9 which
descended into the mouth of an active volcano. The design of these robots has generally been optimized to make the
task of walking as simple as possible. Dante II, for example, is a frame walker, which means that it has two sets of
rigidly connected 4-leg frames that translate with respect to each other. Thus planning was greatly simplified as the
problem was highly constrained. Even amongst walkers with independently articulated legs, most robots employ
legs with only three or four joints each, which also simplifies the task of planning a single leg step because there is a
fairly direct mapping between the task space and the control of the joint parameters.

ATHLETE is unique among this class of multi-legged statically stable walkers due to the complexity of its legs,
which have six degrees of freedom (DOF) each. While most walkers have the luxury of optimizing their mechanical
design to facilitate walking, ATHLETE is constrained by many complex factors such as driving, tool use, launch
vehicle considerations, load carrying, docking, and maintaining a horizontal load platform. These considerations
lead to the general-purpose six-DOF legs used on ATHLETE, which in turn makes the act of planning a single step
more complicated.

II. FootFall

A. Architectural Overview
The system architecture of FootFall,

which is depicted in Figure 3, consists of
telemetry integration and processing
modules that feed an interactive 3D user
interface to enable improved operator
situational awareness. The camera data is
sent through the Ames Stereo Pipeline
for terrain reconstruction, and the pose
and orientation telemetry is combined
with the resulting terrain morphology
and a mass model of the rover to
establish the current stability of the
rover. This is accomplished by
calculating the center of gravity of the
robot in its current configuration and the
Conservative Polygon of Support, which
ensures that the robot will stay stable
even in the event of the total failure of
any single leg. All this information,
along with experienced forces and
torques, are displayed in Viz, a three
dimensional visualization environment
developed at Ames which enables the
operator to effortlessly understand the
current situation of the rover, and to then
select locations on the terrain for the next
foot placement.

Once a desired foot placement is chos
trajectory for the leg, which has taken all s

American I

Figure 3. Overall architecture of FootFall Software
en by the operator, a motion planning module is invoked to plan a
tability and collision constraints (both with itself and the environment)

nstitute of Aeronautics and Astronautics

092407

3

into account. This planned motion can be visually inspected and modified by the operator in the integrated 3D
viewing environment. Currently, multiple motion planning algorithms have been implemented in order to explore
the trade-off between them. The output plans can be used to directly command the robot.

B. Advanced ATHLETE Ground Software
The Planning Software Systems Group at the Jet Propulsion Laboratory has developed a suite of software

applications that support the development of advanced operations technologies for the ATHLETE rover. Each of
these applications is built upon NASA’s Ensemble software application framework, an Eclipse-based platform for
graphically rich application software development. Many of the application components are derived from
capabilities developed and tested on current and recent NASA surface exploration missions, such as the Mars
Exploration Rovers and the Phoenix Mars Lander. The ATHLETE suite of ground software applications is designed
to mange the complexity of the ATHLETE rover and to increase the efficiency of the operator in conducting
prototypical lunar-style tasks. The FootFall software has been designed to interoperate with this suite of ground
tools, using the ATHLETE Telemetry Bridge and is encapsulated as a perspective available to the
AthleteWorkBench, both of which will be described next.

Managing the telemetry data produced by a lunar research robot poses many of the same challenges as one finds
in a flight operations environment. Telemetry data must be captured, stored and made available to the processes that
monitor vehicle health and safety. However, less funding, fewer personnel, and an evolving test vehicle are common
in the research environment. The ATHLETE Telemetry Bridge (AthleteBridge) software application addresses the
problem of providing a realistic ground data telemetry processing system in a research environment.

The AthleteBridge has been developed using industry-standard Java development techniques, including object-
oriented design and open-source tools. The resulting application provides mechanisms for telemetry capture,
broadcast and storage, while enabling realistic time-delay operations of a research robot. The application design
enables rapid deployment of telemetry format changes not only to the AthleteBridge application, but also to related
tools in the ATHLETE application suite.

The AthleteBridge receives telemetry from the ATHLETE robot and provides commands to the same. The
received telemetry is logged to a persistent storage medium and is made available to interested clients through a
broadcast over a computer network. Telemetry is converted from a robot-specific format into a Java standard object
format and the Java objects are then broadcast asynchronously via the industry-standard Java Messaging Service
(JMS) over a network connection and made available to any listening client applications. The AthleteBridge also
further refines the telemetry through a series of pipelines and provides the refined products through the same
broadcast mechanism. The AthleteBridge allows for separate time delay of command and telemetry data streams to
simulate a lunar time-of-flight distance between operator and robot. The AthleteBridge stores telemetry messages in
a database and makes the messages available for playback and analysis. Although the AthleteBridge does not have a
graphical user interface, a user can interact with
the AthleteBridge through a Java Management
Extensions (JMX) web interface for remote
control and debugging.

The ATHLETE Application Workbench
(AthleteWorkbench) provides ground-based
command and telemetry monitoring displays for
the ATHLETE robot. The AthleteWorkbench
combines several different operations tasks into a
single integrated application, including
commanding, telemetry monitoring, image
browsing, mapping, database annotation, and
advanced user input mechanisms. To operate the
ATHLETE robot, the driver sits at an immersive
cockpit that supplies the computer and display
hardware necessary to support the advanced
operations software, including a stereo image
viewer that provides the operator with depth
perception without the need to wear special
glasses.

Figure 4. The ATHLETE ground control cockpit

American Institute of Aeronautics and Astronautics

092407

4

American Institute of Aerona

092407

5

C. Terrain Reconstruction
Terrain reconstruction is initiated when the operator requests that a new terrain be built. Given that ATHLETE

has nine stereo camera pairs (not including the ToolCams), we allow the operator to choose which cameras will be
used to build the terrain model so that processing time and communications bandwidth are not unnecessarily
consumed. Each returned stereo pair is processed through the Ames Stereo Pipeline, which is part of the Ames
Vision Workbench (see below). The resulting digital elevation models (DEMs) are then handed to the Traversability
module, which classifies terrain traversability based on characteristics of the terrain itself. This approach was used in
the Morphin software10 to find paths for planetary rovers through natural terrain. We are currently using a derivative
of the Morphin software in the FootFall system. A similar extension to Morphin created at JPL is part of
GESTALT,11 which is currently being used by the MER rovers on Mars as a means to plan local traversability.12

This traversability stage discretizes the
DEM and analysis each cell for basic
characteristics such as slope and
evenness. The metrics are then used to
color a map of the terrain indicating
good places to place a foot (green) and
those that would be too rough or risky
(red). Finally, the individual DEMs,
image textures, and traversability maps
are put through a process of
GeoSpatial Blending, which combines
the data into a single DEM to be
displayed in Viz and used for motion
planning purposes. The different maps
and textures can be laid over the DEM
so that operators can examine the
results of the various analyses.

The NASA VisionWorkbench13 is a modular,
extensible computer vision framework that supports a
variety of space exploration tasks including automated
science and engineering analysis, robot perception, and
2D/3D terrain reconstruction. The NASA
VisionWorkbench is the synthesis of many computer
vision tools that have been under development at Ames for
more than a decade. The NASA VisionWorkbench has
been used to develop a wide range of NASA computer
vision applications, such as creating gigapixel (images
with more than >106 pixels) 2D panoramas (Global
Connection Project), 3D terrain modeling from orbital
images (Mars Orbiter Camera and Apollo Panoramic
Camera), high-dynamic-range images for visual
inspection, and texture-based image content matching and
retrieval (MER microscopic imager dataset).

Figure 5. Terrain Reconstruction Module Schematic

D. Reachability Analysis
Once the DEMs have been generated, they can be combi

find the reachable and stable locations a leg could be moved
designed to be done on a leg-by-leg basis, only when the ope
computed by finding either the regular polygon of support (
where the feet make contact with the ground), or the conserva
the n-1 polygons of support – i.e. it assumes that any one leg
and the Absolute Stability Margin (ASM – a metric of stabili
CG from the closest edge of the polygon. Reachability is com
radius equal to the length of the leg, and checking if an inver
map is painted green or red if there is a solution or not. Curre
analytic manner, and one must specify full orientation inform
Figure 6. Lunar Terrain Maps Generated by Vision
Workbench from Apollo Panoramic Camera data.
utics and Astronautics

ned with kinematics and mass models of the rover to
 to. As this takes a fair bit of computation, it is again
rator requests it. Based on user preference, stability is
which is simply the polygon created by all the points
tive polygon of support (which is the intersection of all
might slip). The center of mass can then be calculated
ty) can be calculated by measuring the distance of the
puted by taking the terrain patch within a circle with

se kinematic solution exists at each point. The terrain
ntly the inverse kinematic solution is calculated in an
ation, so only one solution is provided, if it exists. A

future line of work would be to allow
some orientation parameters to be left
unspecified (such as rotation around the z
axis), thus finding if there is any solution
for placing the leg at that location. Finally,
for all the locations for which a solution
exists, we then compute the stability of
the robot, were the leg placed in that
position. Positions for which there is a
solution, but which would not be stable
are then colored orange on the terrain
map. In order to compensate for
unmodeled compliance in the robot
(which will be discussed later), we also
require all motions to go through
waypoints 20cm directly above the start and goal positions. These points must also be checked for reachability, and
the map is colored blue if the terrain is reachable, but the compliance compensation waypoint is not.

Figure 7. Reachability Analysis Architecture

E. Viz (3D Viewing Environment) and the User Interface
Viz14 is a 3D photorealistic immersive display program for visualizing 3D terrain models generated from rover

stereo camera panoramas and robot models. Viz was originally developed at Ames for the 1997 Mars Pathfinder
mission, and successfully used by MER for a variety of geo-morphological measurements and virtual exploration of
the area surrounding the rovers. Additionally, the Phoenix mission science team is currently using Viz as a decision
making aid for planning activities. Viz has undergone many revisions and has been ported to the Eclipse software
platform for use on a wide variety of missions and projects where it will be used both as a terrain display and as part
of the user interface for controlling different robots.

The FootFall user interface (UI) is mainly concerned with providing an integrated view of data in Viz to
facilitate situational awareness by the operator and to interact with the motion planners and the generation of
commands. The heart of the UI is a Viz window which shows a model of the robot which is parameterized in real
time by the articulation and pose telemetry received from the robot. Likewise, the torque and force telemetry
received is used to color the joints (green, yellow, red) and to display a force vector at the wheels. Experience has
shown that when walking, the joint torques and forces are critical to monitor and maintain within tolerable ranges.

As terrain reconstructions are requested and
other forms of derived data are generated
(traversability texture and reachability maps),
the operator can select which texture is
displayed on the underlying DEM. This allows
them to inspect the environment until they find
a footfall location that meets requirements for
direction of motion, feasibility, and safety.
They can then select one of the planning
modules (see below) and request a motion plan
to that location. If the planner finds a valid plan,
it will display the individual commands, and
allow the operator to preview each step by
adding a “ghost” leg to the display. The
operator can (but should rarely need to) hand
edit the generated plan steps, and when satisfied
can send each command to the rover.

Since FootFall is designed as a plug-in to
the AthleteWorkBench application, all the other
ground control tools normally used by operators
using the AthleteWorkBench can also be
activated, such as the ability to manually enter
commands, detailed telemetry monitoring, and
an emergency stop button.

Figure 8. The User Interface, with a motion plan, a “ghost”
of the next step shown for preview, and force arrows and
joint torques displayed. The current terrain texture is
colored to show reachability.

American Institute of Aeronautics and Astronautics

092407

6

American Institute of Aeronautics and Astronautics

092407

7

F. Motion Planning
Motion planning for walking robots can be broken down into two different components: how to take a single

step, and how to sequence steps to successfully walk across the terrain. Much of the literature focuses on the second
problem, which is often called gait planning. As discussed in the related works section, this is possible because most
walking robots have fewer degrees of freedom than ATHLETE and the mechanisms have been specifically designed
to simplify the task of walking. ATHLETE is a much more general-purpose robot, with the result that more effort
must be expended to plan for a single step. The FootFall software has been largely focused on this part of the
problem until now, and we will begin to tackle the gait-planning problem over the next year. A core concept to
understand for motion planning is the difference between task space and configuration space. The task space is the
normal 3 dimensional space of our world. This is the space our terrain data is in, and intuitively we want to plan our
motion trajectories and obstacle avoidance in this space. The configuration space (C-space) is defined such that the
range of allowable motion for each joint is represented as one of the dimensions of the C-space. Thus, the C-space
of ATHLETE is a 36-dimensional space, or just six-dimensional if one focuses on a single leg. For some robot
designs, especially those with three degrees of freedom per leg, it is possible to define a clear mapping between the
task space and the C-space. One way to understand the challenge for ATHLETE is to imagine defining an obstacle
free path in task space for the foot of the ATHLETE robot. Since that is a three-dimension path, you are left with
three unconstrained dimensions, which correspond to the orientation of the wheel. If you then pick a specific
orientation you have a complete set of joint angles to command the robot with. Unfortunately, while you may know
that the wheel is collision free, you know nothing about other possible collisions, such as between the knee and
some rock. This is not an issue with a simpler robot such as a frame walker, because you can easily define the space
that the whole leg will move through. But on a complex robot like ATHLETE, you need to ensure that the entire
kinematic chain stays collision free. Clearly one can then iterate through different possible orientations of the wheel
until a collision free path is found (assuming it exists), but this is no longer a trivial solution and can rapidly become
inefficient to calculate. A further complication is that even in the absence of obstacles, it may not be possible for the
robot to follow a given straight line path in task space, even if the start and end points are legal configurations. It is
possible for parts of the path to traverse holes in the reachable workspace or to encounter singularities. In an effort to
try the simplest approaches first, our first motion planner generated simple task space linear plans. We found this
solution to be extremely fragile as most plans violated joint limits or encountered singularities.

For high-DOF robots, it is generally assumed that the best approach is to plan directly in the C-space, while
testing each motion segment for task space collisions. There are may approaches to doing this planning, and the
right one to use is very dependant upon properties of the specific problem being solved, but most approaches share a
few common components. Our approach has been to implement a number of the core modules in a flexible
framework, which allows for easy testing of different planning algorithms so that we can find the best solution for
ATHLETE. We have also taken the simplifying step of only planning for a single leg at a time so that we are only
looking through a six-dimensional space, rather than the full 36-dimensional space of the full robot. The core
components, which are shared across different planning approaches, are the models of the robot and environment,
the collision checker, and a post-process plan smoothing and optimization algorithm. Next, we will discuss these in
detail, including a discussion of the SBL motion planning algorithm we have implemented, and some comments on
our initial experiments with a task space A* planner.

1. Models of the Terrain and Robot
While the DEM model of the terrain and a simplified VRML model of the robot are adequate for display in Viz,

they are not the right format for motion planning, and thus we need to transform them. As the collision detection
algorithm is based on finding intersections between triangles (see below), we need to turn the DEM into a
triangulated mesh. This is currently accomplished by using the VisionWorkbench to create a triangulated terrain.
Currently we are keeping all the points, but clearly a future optimization would be to simplify the terrain into fewer
triangles. Likewise, for computational efficiency we need to transform the VRML model of the robot into one that
uses the fewest possible triangles. As it stands, we already simplify the model of the robot for display in Viz so that
the 3D rendering can be responsive to user interaction. Currently we use a one-time process for manually building
simplified models of the robot. The Viz model is then further simplified for the collision checking, since the runtime
is directly dependant on the number of triangles. Clearly a concern here is that the various models of the robot can
get out of synch with each other, especially as components and tools are added and removed and the robot is
modified. A future line of work will be to have a single central model of the robot, ideally taken from the fabrication
CAD designs, and then enable the automatic generation of the various derived models (Viz and collision avoidance
models).

American Institute of Aeronautics and Astronautics

092407

8

2. Collision Detection
Two kinds of collisions are checked for ATHLETE: self-collisions and environmental collisions. As discussed

above, both of these rely on triangulated-mesh representations of the robot and terrain, which are extracted from the
CAD model and Digital Elevation Map respectively.

Our application uses the Proximity Query Package (PQP) library15,16 from the University of North Carolina. PQP
is able to efficiently detect collisions by representing triangulated mesh models as hierarchical trees of oriented
bounding boxes (OBB-Trees). Given a robot or terrain model consisting of a group of polygons (most commonly
triangles), PQP pre-computes a hierarchy of tightly fitting rectangular oriented bounding boxes (OBB) and organizes
them in a tree. The boxes near the root of the tree span a large number of polygons. To form the next level down the
tree, these boxes are divided in two along the longest axis as possible (“top-down” approach). The division and
addition of levels continues until polygons can no longer be divided. The idea then is that by traversing the tree from
top to bottom collisions are checked with progressively higher levels of resolution. A “separating-axis” theorem is
used to efficiently identify collisions between any two bounding boxes as the tree is explored, often without
traversing the whole tree. Because OBB-Trees are able to fit the model tightly, they allow for fewer levels of the tree
to be explored as compared to approaches using other volumes (such as spheres).

For the purpose of self-collisions the ATHLETE model is passed to the collision checker and decomposed into a
series of components. These include the chassis, as well as six each of hip yaw, hip pitch+thigh, knee pitch, knee
roll+calf, ankle pitch and ankle roll+wheel, corresponding to all six legs. PQP provides the option of signaling a
collision when two objects come within some distance δ ≥ 0 from each other. Our initial testing showed that the
appropriate value of δ is not uniform throughout the robot. In particular, parts that naturally come in close proximity
due to the construction of the robot require a small δ, such as the chassis-thigh pair. On the other hand, components
that are ordinarily far from each other, such as wheel-chassis pairs or parts of different legs, need larger δ’s for
safety because we have less certainty about their actual relative positions due to compliance and encoder noise. With
this in mind, a lookup table has been manually generated indicating values of δ for each pair of components of the
robot. In the case of environment collisions, the value of δ is the same for all parts of the robot.

For ATHLETE, PQP provides the lowest-level collision checker, which verifies any given individual
configuration for collisions. At a higher level, the configuration space planners have a need to check edges, which
are segments connecting two configurations. Exact and approximate techniques have been presented in the literature
for this purpose.17 We currently use an approximate technique that iteratively bisects a linear edge between the two
configurations, until a collision is detected or a maximum, pre-specified, level ε of resolution is achieved without
collisions. This technique is ε-accurate, with ε currently set to 0.01rad for our application. The bisection technique is
observed to work well in detecting collisions because if a given segment is in collision, the middle point of the
segment has a high probability of being in collision. Thus by performing successive sub-segment bisection a path in
collision can generally be detected quickly. More details on this bisection collision checking are provided in the
following section.

3. Single-Query Bi-Directional (SBL) Motion Planner
For the most general step planning, we make use of a sampling-based technique that explores the configuration

space of a single leg to find collision-free paths between the current and desired configurations. Specifically, we
have chosen the Single-query Bi-directional planner with Lazy collision checking (SBL) developed by G. Sanchez
and JC Latombe.18

As with all other sampling-based motion planning approaches, SBL works on the principle that it is considerably
cheaper computationally to check if a single configuration is collision-free than to explicitly construct the C-Space
with obstacles. The search for feasible paths is conducted by sampling configurations between the start and goal, and
verifying if (a) they are feasible, and (b) they can be connected without collisions.

Since SBL only explores a fraction of the configuration space, one might wonder what guarantees it offers in
terms of finding a solution. To answer this question, two concepts are useful: completeness and denseness.
Completeness is generally defined as the ability of a planning algorithm to report whether there is a solution
connecting any two configurations in a finite amount of time. Because sampling-based techniques do not explicitly
construct the configuration space, they cannot provide this guarantee. Specifically, these techniques cannot
conclusively say that a solution does NOT exist. Therefore, more relaxed notions of completeness are defined for
sampling-based techniques, depending on the sampling approach they use. Deterministic-sampling algorithms are
said to be resolution complete if they are shown to sample the space densely. This means that they will find a
solution in finite time if one exists, but might run indefinitely if there is no solution. Similarly, randomized
algorithms are said to be probabilistically complete if the probability of them finding a solution converges to 1 as the

number of samples increases. This completeness is highly dependent on dense sampling, which means that, while
the algorithm will not sample every point in the space, it will generate samples that get arbitrarily close to any point
in the space as time goes by. SBL has been shown to be probabilistically complete, since it performs dense
randomized sampling.

SBL has characteristics that make it adequate for single-stepping on ATHLETE. First, it has been experimentally
observed to significantly reduce planning times in six-DOF robots by virtue of delaying collision checking until it is
absolutely necessary. This lazy approach particularly benefits problems where triangulated meshes with a large
number of triangles represent the robot and its environment, as is the case for ATHLETE. Second, SBL explores the
configuration space bi-directionally. This has been observed to have a higher likelihood of success in finding paths
through narrow-passage and bug-trap situations. Such situations arise in the ATHLETE robot when trying to take a
step toward the inside of the chassis or in highly cluttered environments.

SBL receives two parameters: the maximum number of milestones to generate (s) and a distance threshold (ρ)
that defines “closeness” between configurations. The algorithm proceeds by growing two C-Space trees T1 and T2
rooted at qI and qG toward each other. On every iteration, one of the trees is selected at random with probability 0.5,
and a new milestone mnew is added to it (EXPAND-TREE step). The planner then checks if a connection can be
established between the trees (CONNECT-TREES step), and if so it generates a candidate path τ from qI to qG. This
path includes a segment called a bridge, connecting mnew to m’, the nearest milestone in the opposite tree. If τ is
found to be collision-free, success is returned. Otherwise iterations continue for s steps, at which point failure is
returned. This means that either no path exists, or SBL was unable to find one.

The EXPAND-TREE step proceeds as follows: from the selected tree T, an existing milestone is selected at
random with probability π(m), which is inversely proportional to the density of milestones of T near m. Then, a
collision-free configuration is randomly selected within an adaptively-selected distance r≤ρ of m, and is added to T
as the new milestone mnew. This selection strategy distributes the exploration around areas reachable from the root
configurations, and at the same time prevents over-sampling. It should be noted that only mnew is checked for
collisions at this stage, not the segment connecting it to m. Segment checks are postponed until they are absolutely
necessary in the CONNECT-TREES step. This “lazy” approach has the effect of reducing the total number of
expensive collision checks.

The CONNECT-TREES step of SBL is executed when the L∞ distance between mnew and m’ is smaller than or
equal to the distance threshold ρ. At this point the candidate path τ is checked for collisions in detail by the TEST-
PATH routine, and τ is returned as the motion plan if it is collision-free; otherwise, iteration continues. Within
TEST-PATH individual segments are assigned an integer check score (κ) of 0 if only the endpoints are known to be
collision-free, or 1 if the midpoint is also collision-free. The general rule is that for any κ, a total number of points
2κ+1 have been checked in that segment. When the length of the sub-
segments is smaller than a pre-defined value ε the segment is declared
collision-free. Note that the iterative bisection checking strategy is
followed to a resolution ε as explained in Section 2 above.

For further details on SBL the reader is referred to the original paper
by Sanchez and Latombe. The complete single-step planning process for
ATHLETE can now be summarized as follows: once a terrain model has
been acquired and analyzed for reachability (Sections II.C and II.D), the
human operator selects a leg to move, and a target location for that leg’s
wheel. This fixes the initial and goal configurations (qI, qG respectively).
In theory, using SBL to connect qI and qG would provide the solution we
need. However the ATHLETE robot is, by design, highly compliant and
this means that as a leg is lifted, the redistribution of loads among the
remaining legs causes the legs to comply and the chassis to sag. To
account for this sagging at planning time, we generate intermediate lift
and drop waypoints (qL, qD) depending on the situation, as shown in Fig.
9, and these waypoints are connected using SBL, with simple linear
task-space motions between qI-qL and qD-qG.

Figure 9. Execution of a step along a
planned, obstacle-free path.

4. Path Smoothing
It is important to point out that SBL generates plans that are usually not smooth and acceptable for execution on

ATHLETE due to the nature of randomized sampling. This usually results in large and unnecessary swings of the
leg, as well as jerky back-and-forth motions as shown in Fig. 10.1. Therefore, the plans are post-processed by

American Institute of Aeronautics and Astronautics

092407

9

iteratively discarding unnecessary nodes via Dijkstra’s
algorithm, and bisecting the simplified plan to provide new
nodes to be used for further path simplification. These steps are
repeated until the improvement between successive iterations is
no longer significant (measured by the reduction in total
Euclidean path length in configuration space). The smoothing
process is summarized in Fig. 10. It can be seen that, as the
smoothing progresses, the path gradually becomes shorter. Our
tests have resulted in sufficiently smooth paths when the length
change between successive iterations drops below 25%. The
total number of waypoints is also reduced, usually obtaining at
most five steps. We have found that this smoothing process
takes significantly less time than the original SBL planning
step.

The result of combining this form of path smoothing with
the output of the SBL planner has been very compelling. At
first we had been hesitant to use the SBL planner because the
plans it produced seemed particularly poor, with unnecessarily
large erratic motions, even in the absence of obstacles. This
behavior was the result of the random sampling used to search
the configuration space. With the path smoothing in place, the
generated plans are smooth and simple, with no extra erratic
motion, and traverse a fairly minimal path between start and
end points. One can think about this two-step process as first
finding a feasible path (SBL planner) through the high
dimensional configuration space, and then using that path as a
seed for an optimization process (path smoothing) that
produces a simple and efficient set of motions to arrive at the
goal.

Figure 10. Path smoothing in a hypothetical
2D C-space: the initial and goal
configurations (qI and qG) are separated by a
C-obstacle. (1) Motion plan with N1 nodes
generated by SBL is usually not smooth; (2)
the shortest path is found using Dijkstra's
algorithm, resulting in a smoother motion
plan with N2≤N1 nodes; (3) the simplified
path is bisected, a step that adds N2-1 nodes;
(4) Dijkstra's algorithm is re-run.

5. A* Task Space Planner
Despite the success of the SBL with smoothing approach outlined above, we are interested in exploring other

approaches. Our main desire is to explore the quality of plans and runtime constraints of approaches that do not
depend upon randomized configuration space search. As mentioned elsewhere, we initially implemented a simple
linear task space planner. This often fails due to the linear path not being entirely within the workspace of the leg.
We have now extended that approach by implementing an A* task space planner. This approach discretizes the task
space into 20cm grid cells and then propagates a wave front from the start configuration until the goal configuration
is achieved. We use the same collision detector and path smoothing algorithms described above to ensure a safe and
efficient plan. While this work is still very early in its development, our initial experiments indicate that plans can be
successfully generated in a comparable amount of time as the SBL planner. The main weakness of this approach is
that its success is dependant upon the resolution of the grid cells – if the resolution is too coarse it will not succeed
in finding a path, but as the resolution is increased the run time quickly escalates. Over the near term we will be
comparing the quality of plans produced by the two planners over a variety of terrains and stepping situations. A
likely result is that we will keep both methods in FootFall, with a coarse-grid A* planner being the default approach,
and the SBL planner used as a more complete back-up method should A* fail to find a path.

III. Field Test Results and Future Work
In June of 2008, NASA’s Human Robotic Systems Project, part of the agency's Exploration Technology

Development Program, held an Integrated Field Test at Moses Lake, Washington. During this test, robotic systems
from a variety of NASA centers were brought to the sand dunes outside of Moses Lake where they tested possible
mission scenarios. ATHLETE was involved in a number of these tests, including long distance traverses, docking,
use of the new habitat mockup, navigating steep slopes, and testing the FootFall software. The environment in the
sand dunes was harsh, and challenged many of the robots with rain, sand storms, mechanical failures, and schedule
slips. As a result, there was only time to perform a few tests of the FootFall software, but in that time we were able
to successfully demonstrate that the overall system worked and was capable of generating valid motion plans for

American Institute of Aeronautics and Astronautics

092407

10

Figure 11. AHLETE taking a step over a rock -- motion planned by the Footfall Planner Software

ATHLETE to step over a rock to an operator specified location. These tests were also successful from the
perspective of highlighting which parts of the solution are currently fragile and should be improved over the next
year. The most challenging aspects of operations at the moment are: the compliance in the robot, visibility, and self
imaging. In order to make progress towards next year’s goal of walking the entire robot forward by stepping all the
legs at least once, we will need to tackle all these issues.

1. Compliance
ATHLETE is somewhat compliant, which results in a discrepancy between planned motions and actual executed

motions. Most of this compliance comes from the joints and from the wheels, which are deformable. As a result it is
common to command the leg to lift by 20 cm while the wheel never brakes contact with the ground, but rather only
manages to unload tension in that leg while the frame flexes and droops. This is a problem because a motion may be
generated which avoids collision with the environment, but at run time the compliance in the robot results in the leg
colliding with the rock, as it never lifted itself high enough. For the field test, we implemented a number of
heuristics that compensated for this behavior and allowed us to generate valid collision free paths. The first heuristic
we used was to modify the generated DEM to “lift” the terrain up by 15 cm. This simulates the effect of the robot
sagging and coming closer to the ground, and thus the planner naturally finds a path that lifts the leg higher above
the terrain. Another heuristic we used was to insert way points 20 cm above the chosen start and goal positions, and
then plan a route between these “lifted” points. Finally, we also maintained a minimum safety buffer zone around all
obstacles, which helped avoid plans which seemed feasible to the planner, but which involved passing very close to
collisions. While these heuristics worked and allowed us to safely step over the rock, they came at a cost. Each
modification listed above effectively reduced the workspace that the robot could plan through, making it more
difficult to find a valid motion plan. As an operator, it was easy to see that some locations should be possible to step
to, but the motion planner could not find a valid plan. This was compounded by the fact that the new habitats carried
on top of the robot required a relocation of the generators, which were now hanging below the chassis and severely
limited the range of motion of the hip joint. Operationally, we may be able to simply stand the robot up taller before
attempting to walk, in order to get more room to maneuver between the ground and the chassis. We will explore this,
and other, operational solutions over the next year.

While operational approaches will help inform us about solutions to walking, the main focus of our efforts over
the next year will be to remove most of these heuristics with a more robust solution. Current plans are to develop an
on-board sag-compensation control mode. This approach would use a model of the compliance of the robot, and
feedback from on board sensors, to actively control all the support legs to maintain the position of the chassis as the
“lift leg” breaks contact with the ground. This will keep the robot from drooping and thus minimize the difference
between the planned and executed motions. One can think of this as a similar on-board capability as the compliant
driving that is currently used on ATHLETE. In this mode, the legs actively actuate to maintain the level of the
chassis as the robot drives over uneven terrain and hills. Conceptually, we will be extending this “level chassis
guarantee” to the walking and tool use domains. From an architectural point of view, this split between planning for
a single leg and depending on on-board sag-compensation offers a major advantage over planning for the entire 36-
DOF configuration space of the robot, which is computationally expensive and even more fragile to the realities of
execution.

2. Visibility

American Institute of Aeronautics and Astronautics

092407

11
Careful inspection will reveal that while the above-mentioned gap exists, the bulk of the missing data is actually

While ATHLETE has many stereo camera pairs, their placement is optimized for driving, not walking. The six
NavCams in the outer ring are pointed out towards the horizon and on flat terrain only see ground that is beyond the
maximum reach of the legs. Thus, the three inward facing HazCams must be used. Figure 12 shows a terrain map
using all of the NavCams and HazCams, and one can see the empty gap between the two where no data is gathered.

American Institute o

robot
tran

the

mo

. Self Imaging
 compliance and visibility com

por

caused by the occlusion of the terrain by the legs
themselves. Because we must use the HazCams,
which look through the body of the robot, the
very leg one wants to move blocks the view of
much of the workspace of that leg. Operationally
we are able to take steps that are tangential to the
circle of the robot. During the field test we were
able to accommodate this limitation, though it
also further reduced our available workspace,
limiting the range of possible rock-avoiding steps
we could take.

 Looking forward though, our objective for the
next year is to step every leg such that the

slates its center of mass forward in a given
direction. This will require moving directly into a
blind spot for at least one leg. A basic operational
solution will be to lift a leg, re-image the terrain,
and then plan for placing the leg down again.
While this will work, it is unwieldy and will not be e

The most appealing solution for walking would
 robot. Unfortunately, due to complexities in the w

cameras will be added to the current version of ATHL
to incrementally build terrain maps integrated ove
becomes temporarily occluded. Research and develo
this last year has shown promise for enabling the
enables precise alignment of overlapping images by o
integrated terrain model is produced. One challeng
given the harsh conditions, slight compliance in the
cameras are often slightly miss-calibrated to each o
stereo reconstruction because it is tolerant of, and cor

We have also explored using the ToolCams to ga
unted directly above the wheels, give high-resolu

be occluded by the legs. Unfortunately, it is diffic
because of perspective and compliance. Their locati
that it is challenging to integrate the scene with ter
Deeply compounding this is the error in the camera
kinematic chain. As compliance models of the robot
and see if the problem has become more tractable.

3
The two issues of
tions of the robot structure that appear in the im

through the robot, they end up imaging the legs of th
many undesirable side effects, such as causing our co
The first effort to deal with this was to use software
chunks of the image based on where the legs are su
the results were not beneficial, as the masks often m
part of the image mesh used by the collision checke
being in a false-positive collision, but has two limita
the image beyond the “flattened” area which do no
Furthermore, there is concern about cutting data out
to account for position errors from the compliance
means that a rock immediately next to a wheel may b
Again, we will revisit this issue as the compliance
alteration of the source data.
Figure 12. Limitations to Visibility

f Aeronautics and Astronautics

092407

12

r monitoring foot placement of

ameras, which are

bine together into another challenge: the ability to account for

xtensible to walking over a boulder field in real-time.
be to add cameras optimized fo

iring and computational infrastructure, it is unlikely that more
ETE. Thus, over the next year we will also explore approaches

r time, which would preserve terrain knowledge even as it
pment on Bundle Adjustment19 software within the group over

 desired terrain integration. Conceptually, Bundle Adjustment
ptimizing the supplied camera parameters such that a smoothly

e of working with ATHLETE has been camera calibrations –
 frame, and rigorous testing that ATHLETE experiences, the

ther. The bundle adjustment code will also enable more robust
rects for, slight errors in the camera models.
in visibility into the occluded areas. These c

tion imagery of the environment around the wheel, and will not
ult to incorporate their data into a meaningful terrain model,
on close to the ground creates such a difference in perspective
rain maps reconstructed from the chassis mounted HazCams.
models caused by their location at the end of a long compliant
are developed over the next year, we will revisit the ToolCams

ages it acquires. Since we are using the HazCams, which look
e robot, and reconstructing them as part of the terrain. This has
llision detector to think the robot is in collision with the terrain.

 from JPL that uses the forward kinematic solution to mask out
pposed to be. Unfortunately, with the compliance in the robot,
issed parts of the actual legs. Our current approach is to flatten
r around the location of the foot. This frees us to plan without
tions. First, there are often stereo-reconstruction artifacts left in
t exist in reality (these are “shadows” of the edge of the leg).
of the system – in order to ensure that we flatten enough terrain
 we have to use a large template. This large “flattened area”
e flattened away, and then ignored during the planning process.
 models are developed, hopefully allowing for more minimal

American Institute of Aeronautics and Astronautics

092407

13

IV. Conclusions
A couple high level observations have come out of working on this project. First, it is interesting to realize that

most walking robots have had the luxury of being physically designed to simplify the task of walking. ATHLETE on
the other hand has a much more complex set of constraints, and as such its design is much more general purpose and
flexible. While this makes the task of planning for walking more difficult, it is a challenge that every biological
system faces, and which must be considered by all future general-purpose robots. Another realization is that most
motion planning algorithms for robots with high DOF have been developed mainly in simulation and few of them
have been implemented on real robots operating in natural unconstrained environments with noisy sensors. As a
result, issues of limited terrain visibility and spatially/temporally degrading terrain knowledge are poorly explored.
A consequence of noisy sensors and actuators is that plans are only relevant for a short distance from the robots
current configuration. Beyond a step or two, joint space plans will rapidly become meaningless, especially if on-
board active compliance is being used for sag-compensation. As a result, mid-level and higher route planning for
walking robots needs more attention. Specifically, terrain classification and route planning for wheeled robots is
fairly well understood, but how does one extend this to walking robots? Terrain traversability for a walking robot is
ultimately dependant on the configuration of the robot while traversing that exact location, but planning through
configuration space over large distances is of limited value. We have made an initial attempt at defining an
appropriate set of hierarchical planners to handle this problem, which will be published shortly,20 and we are eager
to start implementing these ideas over the next year.

Finally, the challenges we faced dealing with self-imaging were particularly philosophically interesting.
Biological systems clearly have an ability to segment themselves from the surrounding environment in every
sensory modality used (vision, sound, force, etc). It is fascinating that we are now dealing with the same issues as
we push the boundaries of robotic operation in natural environments. Ultimately, I suspect that this issue will be
solved by ever richer multi-modal models of the environment which are integrated over time, and which enable
robots to more clearly define “self” versus “not-self.” This, of course, lets the imagination run wild with ideas of
intelligence and self-consciousness deriving from the basic computational requirements of orchestrating motion and
manipulation in unstructured environments.

Acknowledgments
This work was performed as part of the Human Robotic Systems Project, which is funded by NASA’s

Exploration Technology Development Program. The authors would like to thank Brian Wilcox and the whole
ATHLETE team for allowing us the opportunity to work with such an amazing robot. We would also like to thank
Kris Hauser at Stanford University for providing some of the SBL and collision checking software which was
modified and incorporated into this work.

Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

References
1Wilcox, B. H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., and

Cooper, B. “ATHLETE: A cargo handling and manipulation robot for the moon.” Journal of Field Robotics Vol. 24, No. 5, April
2007, pp. 421–434.

2Heverly, M., and Matthews, J., “A wheel-on-limb rover for lunar operation.” Proceedings of the Ninth International
Symposium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS). February 25-29, 2008.

3Collins, C., “Stiffness Modeling and Force Distribution for the All-Terrain, Hex-Limbed Extra-Terrestrial Explorer
(ATHLETE)” Proceedings of ASME Design Engineering Technical Conferences, Las Vegas, NV, 2007.

4Campbell, D., and Buehler, M. “Preliminary bounding experiments in a dynamic hexapod.” Experimental Robotics VIII,
Editors Siciliano, B., and Dario, P., Springer-Verlag, 2003, pp. 612–621.

5Kimura, H., Fukuoka, Y., and Cohen, A. H. “Adaptive dynamic walking of a quadruped robot on natural ground based on
biological concepts.” International Journal of Robotics Research, Vol. 26, No. 5, 2007, pp. 475–490.

6Playter, R., Buehler, M., and Raibert, M. “BigDog” In Proceedings SPIE Defense and Security Symposium, 2006.
7Poulakakis, J., Smith, A., and Buehler, M. “Modeling and experiments of untethered quadrupedal running with a bounding

gait: The scout II robot.” The International Journal of Robotics Research, Vol. 24, No. 4, April 2005, pp. 239–256.
8Kar, D. “Design of statically stable walking robot: A review.” Journal of Robotic Systems, Vol. 20, No. 11, 2003, pp. 671–

686.
9Wettergreen, D. “Robotic Walking on Natural Terrain: Gait planning and behavior-based control for statically-stable

walking robots.” Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1995.

American Institute of Aeronautics and Astronautics

092407

14

10Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., and Schwehr, K. “Recent progress in local and global
traversability for planetary rovers.” Proceedings of IEEE International Conference on Robotics and Automation (ICRA). IEEE,
April 2000.

11Goldberg, S., Maimone, M., and Matthies, L. “Stereo vision and rover navigation software for planetary exploration.”
Proceedings of IEEE Aerospace Conference, volume 5, 2002.

12Maimone, M., Leger, C., and Biesiadecki, J. “Overview of the mars exploration rovers’ autonomous mobility and vision
capabilities.” Proceedings of IEEE International Conference on Robotics and Automation (ICRA) Space Robotics Workshop.
Roma, Italy, 14 April 2007.

13NASA VisionWorkbench. 2006. NASA Technology Number ARC-15761, http://ti.arc.nasa.gov/visionworkbench/
14Stoker, C. R., Zbinden, E., Blackmon, T. T., Kanefsky, B., Hagen, J., Neveu, C., Rasmussen, D., Schwehr, K., and Sims

M., “Analyzing Pathfinder Data Using Virtual Reality and Super-resolved Imaging,” Journal of Geophysical Research, Vol 104,
No E4, pp. 8889-8906, April 25, 1999.

15Gottschalk S., Lin M., and Manocha D. “OBB-Tree: A hierarchical structure for rapid interference detection.” In
Proceedings of ACM SIGGRAPH, 1996. pp 171–180.

16PQP: The Proximity Query Package. Software Download: http://www.cs.unc.edu/~geom/SSV/
17Schwarzer, F., Saha, M., and Latombe, J. “Adaptive Dynamic Collision Checking for Single and Multiple Articulated

Robots in Complex Environments”, IEEE Transactions on Robotics, June 2005.
18Sanchez, G., and Latombe, J. C. “A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision

Checking.” Proceedings International Symposium on Robotics Research (ISRR'01), Lorne, Victoria, Australia, November 2001.
19 Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A. “Bundle Adjustment – A Modern Synthesis.” In Proceedings of the

international Workshop on Vision Algorithms: theory and Practice, September, 1999.
20Smith, T., Barreiro, J., Smith, D., SunSpiral, V., Chavez, D. “ATHLETE's Feet: Multi-Resolution Planning for a Hexapod

Robot.” To appear in proceedings, International Conference on Automated Planning and Scheduling (ICAPS), Sydney, Australia,
Sept. 2008.

	Introduction
	Overview of the ATHLETE Robot
	Related Work

	FootFall
	Architectural Overview
	Advanced ATHLETE Ground Software
	Terrain Reconstruction
	Reachability Analysis
	Viz (3D Viewing Environment) and the User Interface
	Motion Planning
	Models of the Terrain and Robot
	Collision Detection
	Single-Query Bi-Directional (SBL) Motion Planner
	Path Smoothing
	A* Task Space Planner

	Field Test Results and Future Work
	Compliance
	Visibility
	Self Imaging

	Conclusions
	Acknowledgments
	References

