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Abstract. Multiagent learning has been shown to be e↵ective in cre-
ating control policies for sophisticated soft-robotic systems based on
tensegrity structures (built from interconnected rods and cables). The
distributed nature of the tension network within a tensegrity structure
along with its smooth distribution of forces is a natural match for dis-
tributed learning. Indeed, multiagent learning has been used to make
control policies that allow tensegrity robots to roll e�ciently, climb hills
and even go over obstacles. In this paper, we extend these results al-
lowing a tensegrity robot to take advantage of its flexible structure to
escape deep trenches, a situation that is usually unrecoverable regard-
ing traditional rovers. Usualy these problems are tightly coupled with
large, flat search spaces which are di�cult for typical multiagent learn-
ing. As an alternative, we show how a two-step Monte Carlo algorithm
combined with a simplified control space based on sinusoid actuations
can be used to solve this problem. Using this technique, we are able to
create control policies that allows a ball-shaped tensegrity robot to es-
cape craters. To further investigate the utility of these control policies
on these flexible structures, we were able to implemented this technique
on under-actuated versions of our tensegrity robot model. We found that
although a decrease in the number of functioning actuators made it more
di�cult for the robot to escape a crater, some control policies still allowed
the robot to successfully escape, despite this limitation. This success is
an important step in creating a robot that can navigate reliably over
di�cult terrains.

1 Introduction

In this paper, a technique is proposed which enables an extraterrestrial rover
based on a tensegrity structure to escape from craters or ditches. In a real plan-
etary exploration mission, extremely careful planning is taken to insure a rover
never moves over a small crater or crevice. This careful planning can hinder the
rover from exploring interesting science near an area with these di�cult terrain
profiles. Tensegrity rovers have already been shown to do an excellent job per-
forming scientific tasks in tough places and positions [8], so finding an optimal
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controller for these rovers can enable the use of these robots as a scientific agents
extraterrestrially.

Tensegrity structures are passively compliant structures which are composed
of compression elements suspended within a network of tension elements, as
seen in figure 1. These structures feature a flexible design that counteracts the

Fig. 1. A simulated tensegrity structure built within NTRT. Each of the six rods is
1.5 meters long to model tensegrity structures currently being researched at the NASA
Ames Research Center.

shortcomings of current surface exploration rovers. They are impact resistant
and lightweight structures that ideally have no bending or shear forces that must
be resisted. They also globally distribute forces to all members, decreasing the
magnitude forces induced into a single element. Control of tensegrity structures
is still a very open question, with progress made by [3–5, 7, 10, 12] for basic
mobility even over complex and rough terrain. Though, the control law for basic
mobility may not be enough to enable the rover out of certain terrains. This
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paper focuses on a previously unexplored area of robotic maneuvers, escaping a
deep trench or craters.

Current planetary and lunar rovers are constrained by traditional robotic
attirubutes. The wheels found on these rovers only allow the robot to locomote
on relatively smooth and level surfaces. In addition, non-structurally compliant
parts prevent large impact forces on the robot and generate single-points-of-
failure. Due to their fragility, these robots require expensive measures must be
taken to ensure protection during transportation, landing, and locomotion.

Tensegrity robots, however, feature a flexible design that counteracts the
shortcomings of current rovers. Their composition of rods and cables creates a
impact resistant skeleton, removing the need for costly cushioning during trans-
portation and landing. This in turn allows for an increase in the proportion of
scientific equipment to payload per mission trip. Inherent redundancy in design
means that the failure of a single cable or rod will not jeopardize the viabil-
ity of the tensegrity rover. Previously explored punctuated-rolling locomotion in
tensegrity rovers has shown that these robots are capable of navigating rough
terrain that traditional rovers cannot maneuver [7]. Neither current rovers nor
traditional rovers have a method for escaping particularly treacherous ground.

Additionally, tensegrity structures possess an ability that allows them to
function even when some of their cables can no longer actuate. This redundancy
protects tensegrity robots from single points of failure, an attribute which tra-
ditional rovers lack. By simulating situations in which tensegrity rovers cannot
actively use all of their cables, work around solutions can be developed on-the-
fly. This is particularly useful if during an extraterrestrial mission, unexpected
mechanical errors inhibit the capabilities of the rover (e.g a motor failure or a
broken cable).

Our proposed solution to this is a learning module that teaches tensegrity
rovers how to escape ditches and craters on-the-fly. Our solution consists of two
tiers of sampling simulations according to their control policies.

In a given environment, a tensegrity can optimize its existing control algo-
rithm to match the scenario with which it is faced. This allows for on-board path
planning to escape whatever physical obstacles is blocking the movement of the
robot.

2 Implementation

Our proposed solution is a learning module that teaches a tensegrity rover how
to escape trenches and craters. Given the environment and an existing control
algorithm for movement, the tensegrity rover can optimize its movements to
match the scenario. This allows for on-board path planning to escape trenches,
craters, or other physical barriers blocking the rover’s movements.

The NASA Tensegrity Robotics Toolkit (NTRT) is a pivotal simulator for
exploring the complex dynamics of tensegrity robots. NTRT is built on the Bullet
Physics Engine, version 2.82, and is an open source platform for the design and
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control of tensegrity structures and robots4. In order to create structures within
the toolkit, a set of builder tools are utilized which specify geometric rods and
connecting cables as a set of Cartesian coordinates. These structures can then
be specified as substructures and manipulated in three dimensional space as
necessary to build complex tensegrity structures.

The tensegrity structure used in this paper is a 6-rod icosahedron with 24
actuating cables, each of which is called a muscle. This structure was cho-
sen to mimic the Dynamic Tensegrity Robotics Lab’s research at the NASA
Ames Research Center into exploring tensegrities as an option for extraterres-
trial rovers [1, 2, 11]. For the muscle model, a linear spring model consisting of
two points implementing Hooke’s law with a linear damping term is used as
defined in (1).

F = �kX � bV (1)

A simple change in length motor model is also implemented within each
muscle, where the muscle is deformed by changing the rest length of the spring
model.

2.1 Controller Definition

It has been shown by Kim et al in [9] that controlled locomotion may be achieved
by deforming only the equilateral, triangular faces on a tensegrity structure. By
consulting the results in [9], we not only ensured locomotion in the robot, but we
were also able to reduce our search space by segregating the muscles according
to the equilateral faces. Each cluster is a set of three muscles conjoined to form
one of the 8 equilateral triangular faces. To actuate our tensegrity structure, a
control algorithm was created to generate synchronized motion between these
clusters.

A complex approach, based on this method towards locomotion, has been
used to produce a rolling motion in 6-rod tensegrities as illustrated by Atil Iscen
et al in [6]. To further reduce the solution space for our multi-level Monte Carlo
simulation, we simplified Iscen’s controller such that all actuation in the structure
was determined by 8 sine functions, one for each cluster of muscles. Each muscle
actuates towards a shared goal length within its cluster, but this goal length
varies by cluster. The exact goal length at any time step in the simulation is
dictated by a sine wave. Specifically, our goal muscle lengths are regulated by
four sine wave parameters: amplitude, angular frequency, phase change, and DC
o↵set. The equation defined by these four parameters is shown in equation (2).

y = Asin(!t+ ') +D (2)

Where A is amplitude, ! is angular frequency, ' is phase change, and D is the
DC o↵set.
4 Additional information about NTRT can be found at
http://irg.arc.nasa.gov/tensegrity/NTRT
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The amplitude is the maximum deviance from the initial pretension in length
to which a muscle can actuate. The angular frequency is how often a muscle
cycles between its maximum length and its minimum length. Lower angular
frequencies are due to greater acceleration by the motor. The phase change is
the length of a muscle at the start of the simulation (i.e. at which point during
its period the sine wave begins). The DC o↵set is the default length of a muscle.
These four sine wave parameters together dictate the resulting goal length of a
muscle. Each controller, therefore, requires 32 input parameters to function (the
4 sine wave parameters for 8 di↵erent clusters).

The control policy of the tensgrity structure is dictated by these 32 sine wave
parameters. Each simulation run in our experiment has a unique control policy.
The 32 values in a given control policy are Monte Carlo values within the range
of [0, 1]. These values are then scaled according to their corresponding sine wave
parameter. The result is that the control policy, the 32 sine wave parameters,
commands all of the motion generated by our tensegrity structure.

2.2 Control Parameter Constraints

Each sine wave parameter was constrained to real-world limitations. Since actua-
tors outside of simulation can only ever stretch as far as their material properties
allow, the amplitudes in simulation follow this physical constraint. DC o↵sets less
than the minimum length of an actuator are nonsensical, so this sine parameter
was limited to the rest length of each muscle. Likewise, angular frequency was
limited to mimic the acceleration limitations of mechanical actuators. For this
experiment, we limited our amplitudes to be less than fifty percent of the initial
length and actuations to occur at frequencies between 0.3 and 20 Hz. The phase
change of any sine wave was limited to be within [�⇡,⇡]. The amalgamation
of these constraints formed a more accurate model for simulating the tensegrity
robot, providing us with more useful results. To test for actuator robustness and
redundancy, we simply limited which cables were able to change length during
the simulation. We can artificially select cables to “fail”, that is, to never change
from their original length. The cables are still present in the structure, but due
to their imposed inability to move, become passive components to the robot as
a whole. For our experiments, we compared structures with 100% of their 24
actuators still functioning to structures with 75% (18) of the cables functioning,
and to structures with only 50% (12) of the actuators changing with respect
to their sine wave control policies. This comparison illustrates whether or not
the reduction of capable actuators in the tensegrity structure dooms the entire
robot.

2.3 Simulation Execution

To simulate a tensegrity structure becoming trapped in a crevice, four walls were
created to enclose the robot. As seen in Figure 2, the robot was placed in the
middle of these four walls such that the only way it could escape was by climbing
out over an edge of the crevice. Once the robot had completely removed itself,
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it simply falls o↵ the wall. This not only prevented the robot from accidentally
re-entering the crater, but prevented the robot from returning within 25 meters
of its origin (the center of the crater). As a result, recorded displacements of
over 25 meters indicate a successful escape.

To test our controllers in the simulator, we established a two-tier system for
sampling control policies. We define a sample as a single simulation run and
we define a tier as the set of samples that are run according to the same high
level policy. We also define a generation to be an individual tier within a given
experiment. In the first tier of sampling, we set control policies according to a
uniform distribution of Monte Carlo values. Each of these Monte Carlo values
correspond to one of the 32 parameters which dictate the actuations of our robot
with respect to time. By determining which control policies caused the tensegrity
robot to escape from its crater, we can segregate samples as either successes
(escaped) or failures (not escaped). The successful samples from the first tier
are used to centralize the sampling ranges for the second tier. In this second
tier, the control policies of the simulated robots are made to imitate already-
successful control policies. The only di↵erence in sampling policy for this new
tier is that each Monte Carlo value in the second tier is sampled uniformly within
an acute range which is centered around “trustworthy” Monte Carlo values for
that particular parameter.

Each of our samples run for 60, 000 steps. As a result, a total of 100 seconds
are simulated each sample. To find enough control policies that successfully
generate an escape path, at least one thousand samples were executed in each
generation. Once a sample has finished executing, the control policy of that
sample as well as the final displacement of the robot are recorded.

To test actuator robustness, we took 100 samples of the simulated robot at
each of the three actuator settings (100%, 75%, and50%actuatorsenabled). Each
of these samples were run for 100 simulated seconds as well.

2.4 Reward System

In this experiment, the control policy of an individual sample was judged to be
either a success or a failure. This judgement depends on that sample’s displace-
ment (the distance traveled by the tensegrity rover from its initial position). The
magnitude of the displacement of a simulated tensegrity robot determined the
categorization of that sample’s control policy. Specifically, if a displacement was
larger than the distance between the crater’s origin and the edge of the crater,
that displacement indicates the robot successfully escaped the crater. As a result,
the control policies of samples that resulted in a displacement of 25 meters or
more were deemed successes. All other control policies were considered failures.
The sine wave values that constituted a successful control policy were saved for
the next generation while the others were cast out. This procedure, in summary,
sorts data as either capable of generating viable escape paths or as data that is
incapable of generating viable escape paths.
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(a) t0 (b) t0 + 0.5s

(c) t0 + 1.0s (d) t0 + 1.5s

Fig. 2. A tensegrity structure escaping a crater. The crater has roughly a 25m radius
at its closest edge and is elevated above the ground to keep the escaped tensegrity
robots out.
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2.5 High Level Policy for Generations

Each sample represents a simulation based on a set of 32 control values and its
resulting performance. Each generation is then taking samples from the previous
generation to help determine which samples to take. In Generation 0, control
policies of each sample are uniformly random and are determined by the Monte
Carlo method. The Monte Carlo values ranged from 0 to 1 inclusive. These
values were eventually scaled to match the physical requirements as dictated in
sub-section 2.2. These assigned sine wave values follow an even distribution such
that the probability of any given legal value (i.e. [0, 1]) being assigned is equal to
the probability of any other legal value. For our experiment, we ran 1000 samples
in Generation 0.robot When every sample in this base generation has finished
executing, the recorded results were parsed. Once the successful samples have
been filtered out, their control policies are stored for use in the next generation.

In Generation 1, control policies of each sample consider the already-proven
successful policies of Generation 0. Control policy values in Generation 1 are
centered around the respective input policy values from Generation 0. To op-
timize the results from Generation 0, the control policy values for Generation
1 are then tweaked by as much as 0.5%. Each of the successful samples from
Generation 0 were re-run in Generation 1 ten times, each with a slight variation.
The purpose of this action is to discover what improvements can be made on al-
ready successful control policies. The exact variation on the Generation 1 control
policy values is dictated by the Monte Carlo method. Once again, the selection
distribution of this Monte Carlo sampling is even, so each value within ±0.05%
of the input Generation 0 sine wave values is equally likely to be chosen. These
modified control policies are then simulated en masse. For our two-tier experi-
ment, we ran 1100 samples, ten times the number of successful control policies
discovered in Generation 0. As in the base generation, the recorded results are
analyzed and the successful samples are filtered out.

To test actuator redundancy, we ran 3 generations of 100 samples each. The
first generation was our control group (all 24 actuators functioned according to
their sine wave control policies). The second generation experienced a forced
actuator failure in 25% (6) of the 24 actuators. These “failed” actuators became
passive components as the other 18 actuators behaved normally. The third and
final generation only had half (12) of its actuators functioning according to sine
wave control policies.

3 Results

3.1 Results of Two-Tier Monte Carlo Simulations

We ran experiments on the controller of our tensegrity robot to optimize escape
paths out of an arbitrary crater. To measure the success of each control policy, we
record the displacement of the corresponding simulated robot. This displacement
is used as a score for comparison against the displacements of other samples.
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In addition to the displacement of the robot, the 32 Monte Carlo values,
the control policy of that sample, that generated said displacement were also
recorded. To escape the simulated obstacle, a displacement of at least 25 meters
was required. Because of the height at which the robot rested on top of the fissure,
once a robot escaped (and consequently reached 25 meters from its origin), it
fell out of the crater. Consequently, all robots that were able to escape remained
outside of the crater for the remainder of that trial. This means that there were
no samples in our simulation where a tensegrity robot escaped a crater only to
fall back into that crater.

The scatter plots, Figures 3.1 and 4, feature data points for each control
policy. Since each sample has exactly one control policy, there are 1000 data
points in the scatter plot for Generation 0 and 1100 data points in the scatter
plot for Generation 1. Each data point represents a 32-dimensional value, the 32
sine wave parameter control policy.

(a) Generation 0

Fig. 3. The displacements reached in 1000 independent samples using Monte Carlo
generated control policies.

Generation 0 yielded diverse, but uneven results (see Figure 3). Displace-
ments ranged from 0.01 meters to 216.55 meters. The mean displacement trav-
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eled by the robot was 9.91 meters and 11.1% of samples resulted in a successful
escape. The vast majority (88.9%) of Generation 0 samples featured a failed
control policy (i.e. the robot did not escape the crater).

(a) Generation 1

Fig. 4. The displacements reached in 1100 independent samples using control policies
dictated by the successful samples from Generation 0. The values in the set of sine wave
parameters from Generation 1 samples were each centered around one of the successful
corresponding sine wave parameters in Generation 0 control policies. These Generation
1 values were then modified to be within 0.5% of their respective Generation 0 values
with the goal of optimizing Generation 0 control policies.

Generation 1 yielded a larger range of results than Generation 0, most notably
including a greater number of successful samples. Displacements ranged from
0.05 meters to 223.59 meters. The mean displacement traveled by the robot was
20.53 meters and 24.0% of samples resulted in a successful escape. The majority
(76.0%) of Generation 1 samples featured a failed control policy (i.e. the robot
did not escape the crater).

The combined results from the two high level policies have shown significant
improvement from Generation 0 to Generation 1. The minimum, average, and
maximum displacements in Generation 1 were all improvements over the previ-
ous generation. A randomly selected sample from Generation 1 was 2.16 times
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Table 1. Displacement (m) by Generation

Generation Minimum Average Maximum % Escaped
0 0.01 9.91 216.55 11.1
1 0.05 20.53 223.59 24.0

more likely to generate a successful escape path than an arbitrary sample from
Generation 0. The mean displacement of a Generation 1 robot was less than 5
meters from its goal displacement; a 207% increase from the comparable mean
Generation 0 robot.

3.2 Results of Actuator Redundancy Experiments

Fig. 5. 100 Samples of Tensegrity Structures with 24 Actuators

By reducing the number of functioning actuators on our simulated tensegrity,
the limitations of tensegrity escape can be better explored. With all 24 actuators
on the tensegrity functioning correctly, a successful escape is relatively easy (9%
success rate) (see Figure 5).
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Fig. 6. 100 Samples of Tensegrity Structures with 18 Actuators
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In the second generation, 6% of the tensegrity structures were able to escape.
With 18 actuators on the tensegrity functioning correctly, a successful escape is
more challenging, but not impossible (see Figure 6).

Fig. 7. 100 Samples of Tensegrity Structures with 12 Actuators

With just half of the original actuators functioning correctly, a successful
escape is even more di�cult (see Figure 7). In this generation, 4% of tensegrity
rovers were still able to escape the ditch in the allotted time.

These generations of varying actuator capability illustrate a number of impor-
tant trends. Our results show that all three generations produced some successful
samples. This indicates that tensegrity robots can still complete the complex task
of escaping a crater while performing with a reduced number of actuators. Since
not all actuators were required to escape the crater, the redundancy of tensegrity
structures for escaping craters as we have demonstrated is verified. These results
suggest that tensegrity robots will be able to adapt to structural and mechanical
malfunctions that might prove fatal to other robots. More generally, the data
suggest that tensegrity robotics as a whole present an inherent benefit for dealing
with hazardous situations that threaten the very structure of the robot. Robots
which are most trustworthy can be sent on a larger variety of extraterrestrial
missions, exploring environments otherwise inaccessible to traditional rovers.
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4 Conclusions

Controlling tensegrity robots is a di�cult task due to the novelty of the structures
as well as the inherent complexity of actuation patterns. Unlike most traditional
robots, which operate in strictly confined ranges of motion, the flexibility of
tensegrity structures allows for a more diverse spectrum of structural configura-
tions. This complexity, consequently, translates to a plethora of potential control
algorithms and classes of controllers.

In order to significantly reduce this overwhelming problem space, we have
explored methods to reduce the variation between versions of our controller while
retaining a high empirical success rate. Specifically, our solution intelligently
mapped muscles and used very simple control policies (sine waves). By clustering
the muscles in our tensegrity structures into triplets, we reduced our problem
space by two thirds. Sine wave control functions meant that we could completely
define the actuator goal length with respect to time of each cluster in only four
parameters. By reducing our problem space, we were able to run Monte Carlo
simulations to quickly obtain useful data on escape controllers.

The results from the two generations of simulation have illustrated the com-
pounding improvements that a two-level Monte Carlo simulation can yield. In
Generation 0, uniformly random control policies produced by the Monte Carlo
method established a baseline success rate for tensegrity structures escaping our
crater. Generation 1 built o↵ of the information obtained from Generation 0 by
sampling around the corresponding values of Generation 0’s previously-tested
control policies that were shown to succeed. The result is a proven system that
optimizes control parameters for tensegrity robots that must escape craters.

Tensegrity structures, due to their abundance of cables, are able to actuate
in a variety of manners. This redundncy, coupled with the flexibility of the sus-
pended system, allows tensegrit robots to successfully actuate even when limited
by “failed” actuators. If our tensegrity rovers lose actuation capability in 6 or
even 12 of their 24 actuators, it can still succesfully escape the crater with which
it was presented. This is particularly relevant to the original mission of the rover
because loss of mechanical capability is not uncommon in extraterrestrial robots.
This ability to function, even under adverse conditions, can allow for missions
to continue when more traditional rovers would fail. Also, robots with greater
redundancy can be trusted to explore more dangerous terrains and environments
than their traditional counterparts. This means scientific data can be recorded
from more hazardous missions than previously allowed.

We are currently extending this research in four directions. First, we are
analyzing alternative ways high level policies for Generation 1. New high level
policies could not only improve benchmarks we have already achieved, but also
allow us to explore neighborhoods of successful control policies. Second, we are
investigating the results from generations that use the successful control policies
of Generation 1. From these future generations, regressions can be determined to
formally define the e↵ect of each tier of the Monte Carlo simulations. Third, we
exploring alternatives to the Monte Carlo method for generating control policies
in each generation. A new distribution could accelerate the optimization process
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and may be necessary if more complex control policies are substituted for our
current approach. Finally, we are further exploring the limitations of actuator
redundancy. By seeing the minimum mechanical requirements for a required
motion, a tensegrity rover can determine whether a particular task would be
possible during its mission. This includes analyzing not just how many actuators
are needed to function, but which actuators specifically are required, given the
orientation and position of the entire system. We can also explore the failure
of cables to not just actuate, but to remain connected at all. A robot will most
likely move di↵erently depending on whether its failed actuators are passive (just
failed motors) or completely broken.
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