
Runtime Decision Sampling and Branch Utility
Re-Evaluation in the Robust Execution of Contingent Plans

Emmanuel Benazera
RIACS, NASA ARC, Moffet Field, CA

ebenazer@email.arc.nasa.gov

Richard Levinson, Thomas K. Willeke
QSS Group Inc, NASA ARC, Moffet Field, CA

rich,twilleke@email.arc.nasa.gov

Howard H. Cannon
NASA ARC, Moffet Field, CA

howard.h.cannon@nasa.gov

Abstract— Current planning algorithms have difficulty han-
dling the complexity that is due to an increase in domain
uncertainty, and especially in the case of multi-dimensional
continuous spaces. Therefore, they produce plans that do not
take into account numerous situations, such as faults or other
changes in the planning domain itself and that can occur
at runtime. Here, we present our approach to the robust
execution of contingent plans, i.e. that involve conditional
branches based on decision functions of the system state.
We use a version of the Monte-Carlo simulation for Markov
Decision Processes to re-evaluate branch utility values and
branch conditions whenever an unpredictable event occur,
based on health monitoring information at runtime.

Index Terms— Execution under uncertainty, Contingent
planning, Monte Carlo simulation.

I. INTRODUCTION

The need for autonomy and robustness in the face of
uncertainty is growing as planetary rovers become more
capable and as missions explore more distant planets.
Recent progress in areas such as instrument placement
[1] makes it possible to visit multiple rocks in a single
communication cycle. This requires reasoning over much
longer time frames, in more uncertain environments. Sim-
ple unconditional plans as used by the Mars Exploration
Rovers (MER) will probably have a very low probability
of success in such context, so that the robot would spend
almost all its time waiting for new orders from mission
control.

Recent architectures for future planetary rover missions
include a planner/scheduler, a health monitoring system,
and an executive. The planner/scheduler generates a control
program/plan that describes the sequence of run-time ac-
tions necessary to achieve mission goals. Since the rover’s
environment is highly uncertain [2], the control programs
(also called plans) are contingent plans [3] in that they
involve conditional branches that are based on decision
functions of the system state that the executive can evaluate
in real time. The executive is responsible for the execution
of the control programs, taking into account the current
state of the system as estimated by the health monitoring
system. This capability, also referred to as robust execution
under uncertainty, includes deciding the best branch in a
plan when reaching a branch point, given an estimate of the
current system state, inserting and replacing plan portions
to react to faults and other unpredictable events.

Typically, planning proceeds to a mapping from the
system state space to the utility space, i.e. the utility
obtained by executing the plan, that it seeks to maximize.
Noting the system state s = (x, r) with x ∈ X the discrete
state (or system modes), and r ∈ R the multi-dimensional
continuous state (including time), the utility earned by
executing a branch bi starting at s can be noted:

Vbi
(s) =

∑
x′∈X

∫
R

p((x′, r′) | s, ai1)[U(ai1, (x
′, r′))

+ VBi
(x′, r′)]dr′ (1)

with ai1 the first action of branch bi, Bi the remaining
portion of the branch, U(ai1, (x

′, r′)) the utility earned,
and s′ the system state after executing ai1 following the
probability distribution p(s′ | s, ai1). Over a belief state
b(s), as estimated by the health monitoring system, we
have:

Vbi
(b(s)) =

∑
x∈X

∫
R

Vbi
(x, r)b(x, r)dr (2)

And at a branch point where n branches are available, the
best branch is decided according to:

b∗ = arg max
i∈[1,n]

Vbi
(b(s)) (3)

This is similar to the Bellman equations for the Partially
Observed Markov Decision Processes (POMDPs)[4], [5].
But such planners have difficulties handling certain situa-
tions, such as actions that carry no utility (typically used
for responding to unlikely situations), fault occurences and
belief state update. Actions with no reward can usually be
inserted anywhere in the plan at low cost, so the greedy ap-
proach that seeks to maximize the expected utility (relation
(3)) fails to position them efficiently. Second, most planners
use a nominal model of the world and system actions,
not representing potential faults (e.g. stuck wheels, broken
navigation system, rocky environment, etc...). Moreover,
fault models exponentially increase the complexity of the
planning even if the faults have low probability of oc-
curence as they can occur at any time. Finally, the health
monitoring system returns an ever changing belief state
over time that has to be taken into account (relation (2)).
For these reasons, the response to unlikely situations and
faults is better decided at execution: the health monitoring
system passes a belief over system state to the executive

that decides which portion of the plan to execute, some-
times inserting/replacing wanted/unwanted plan blocks.

In general, the problem can be seen as one of re-
evaluating online the utility value of branches of the
contingent plan to decide the best of these branches. In
this paper we show how to adapt the classical technique of
Monte Carlo (MC) simulation [6], [7] to the re-evaluation
of contingent plans and decision under uncertainty. The
novelty lies in an algorithm that makes near optimal
decision and computes branch decision lines through piece-
wise constant approximations of value functions, based on
Bellman equations. The integrated approach is to be tested
on a Mars-type rover simulator this month, and is the first
step toward the development of new techniques for both
planning and execution under uncertainty in the coming
years. We start by giving the reader a brief description of
a contingent plan and the need for plan re-evaluation.

II. CONTINGENT PLANS, AND FLOATING
CONTINGENCIES

The work that is presented in this paper builds on top
of a larger effort, the development of theory and tools for
planning and execution under uncertainty [8], [9]. Briefly,
a contingent plan can be seen as a tree of branches, that
are chains of actions with uncertain cost in term of a
set of continuous resources, typically energy and time.
A temporal network represents and propagates the time
constraints among the actions and branches. An addition
to this framework is one of having floating contingencies,
i.e. branches that can be plugged in the plan tree at any
time, depending on conditions over the resource state.
These branches are typically used to react to unpredictable
situations. The nodes of the tree are known as the branch
points of the contingent plan. The value function for a
node is a continuous function over the multi-dimensional
resource state, i.e. a mapping from the resource space
to the utility space, and depends on downstream node
value functions. Planning determines the conditions over
the resource space that discriminate among the branches
at a given branch point [3]. Thus when the plan execution
reaches a branch point, the branch conditions are evaluated
to determine which branch is to be executed next. But
due to uncertainty on the resource state or because the
conditions and hypothesis under which the plan has been
created have changed, the branch conditions can become
nonvalid and must be re-evaluated. Note that whenever
these changes occur, the mission objectives however remain
the same, so the topology of the contingent plan remains
unchanged but for the insertion/replacement of portions of
the plan to respond to unpredictable situations.

A. A contingent plan for the Mars exploration domain

Consider the plan for a Mars rover on figure 1. It tells
the rover to first navigate to a waypoint w0, and there
to decide whether to take a high resolution image of the
point (HI res) or to move forward to a second waypoint w1

depending on the level of resources (here energy and time).
After reaching w1 and digging in the soil, it must decide

whether to move forward to waypoints w3 or w2 or to
simply get an image of w1 and wait for further instructions.
NIR is a spectral image of a site or rock. Action time and
energy consumptions are represented as Gaussian bumps
over empirical mean and variance.

B. Computation of branch conditions

To determine the branch conditions, planning needs to
approximate the branch value functions at branch points.
Each function maps the resource space to the utility of
the branch. The max operator of relation (3) defines an
upper bound on the branch point overall utility value, and
branch conditions are found at the functions intersections.
Now consider figures 1(b) and 1(c), where branch value
functions are pictured for both branch points bpt1 and bpt2.
Intersections define branch conditions α1, and α2, β2: for
example at bpt2, if the measured resource (here the energy)
is below α2, the rover will decide to execute branch b5.

Unfortunately, all situations cannot be efficiently pre-
dicted at planning time, so produced functions are not valid
in all cases. For example, action costs can change dramat-
ically during execution, due to the possible occurence of
faults (e.g. a faulty wheel that slows rover’s navigation and
changes the time/energy cost of the action). Similarly, plan
portions insertion/replacement approximations that have
been developed [10] fail here as they rely on pre-computed
value functions.

These changes produce a shift in the value functions,
thus perturbating the functions intersection, and modifying
the branch conditions. Moreover, a shift at one branch point
implies shifts on value functions of all other branch points
downstream in the plan. Therefore, when changes occur,
it becomes necessary to re-evaluate large portions of the
plan.

C. When to re-evaluate the contingent plan

There are several conditions and situations under which
the plan value must be re-evaluated. First, when the execu-
tion encounters a branch point, any change in the Bellman
equation functions, such as the belief b over the state s,
the reward model U , the action cost model, requires that
all branch functions at this branch point are re-evaluated.
Second, if not at a branch point, but if a floating branch
has to be inserted, then the plan equation is changed and
the remaining portion of the main branch as well all future
branch conditions must be re-evaluated. For example, when
inserting a branch bf , equation (1) becomes:

Vbf
(s) = Vbf

(s) +
∑

x′∈X

∫
R

p((x′, r′) | s, bf)VB(x′, r′)dr′

(4)
where B is the remaining portion of the current plan to
be executed after bf . The local value of bf is the expected
reward from the actions within the floating branch itself.
The remaining term is a representation of the end state of
the local plan, including the probability of the resources
remaining after executing the local plan.

u=8
Navigate w1 Navigate w2

Navigate w3

[5;1] [1;0.2] u=5

u=1

[10;3] [1;0.2]

u=2

[3;1] [1;0.5]

Dig w1

Dig w3

NIR w2

u=8

[20;7] [2.5;0.2]

u=5

[5;2] [1;0.5]

u=3

[4;1] [1;0.5][10;2] [2;0.3]

HI res

[4;1] [1;0.5]

u=3

[4;1] [1;0.5]

HI res

bpt1

bpt2

b0 b2

b5

b4

b3b1

Navigate w0

u=2

(a) Contingent plan for the Mars rover domain

1

PSfrag
replacem

ents

0

2

6

13

20

b1 b2

b
3

b
4

b
5

Vb1

Vb2

V
b
3

V
b
4

V
b
5r

V

α1

(b) Value functions of branches at branch point
1 (bpt1)

PSfrag
replacem

ents

0
2 6

13

20b
1

b
2

b3

b4

b5

V
b
1

V
b
2

Vb3

Vb4

Vb5

r

V

α
1

α2 β2

(c) Value functions of branches at branch point
2 (bpt2)

Fig. 1. Branch value functions at branch point for a detailed rover problem

For all these reasons, plus the difficulty of computing
the recursive multi-dimensional integrals of equation (1),
we adopt an MC approach as a generic technique capable
of solving all these problems together at execution time by
re-evaluating the value functions, whose new intersections
are later approximated. Another solution is a discretized
Dynamic Programming backup. However it is less flexible
than the MC approach and requires approximations of the
planning domain to become tractable [9].

III. THE MONTE-CARLO APPROACH TO THE ONLINE
RE-EVALUATION OF CONTINGENT PLANS

A. Approximating branch average utility
Applying Monte Carlo techniques to the approximation

of equation (2) is straightforward: the integral over the
multi-dimensional continuous space is turned into a sum
by sampling N times from b(s) and p(s′ | s, a), and the
utility is averaged over the successive runs. We note:

V̂bi
(b(s)) =

∑
x∈X

∑
x′∈X

[U(ai1, s
′

j) + V̂Bi
(s′j)] (5)

V̂ std
bi

(b(s)) =
1

N

N∑
j=1

V̂bi
(b(s)) (6)

where s′j ∼ p(s′ | sj , ai1) and sj ∼ b(s). The larger
the N , the better the fit to the underlying probability

distributions, and the better the approximation. Note that
the major drawback of the Monte-Carlo approach is that
it provides a probabilistic guarantee of its results, that is
never absolute. In this work, given the complexity of the
studied planning domain, we assumed we would always
dispose of a sufficient number of samples.

B. Plan simulation

For simulating branches with MC, we use a prioretized
pile of events including plan actions, and a set of con-
straints among them. The pile is filled up with actions
whose execution is simulated by testing their temporal
constraints and sampling their costs before being rewarded
and popped out. Floating branches are a challenge to
the simulator because they can trigger at anytime. The
simulator uses random events to trigger these branches and
special dynamic constraints to handle their insertion. The
complexity increase due to floating branches is a product
of the number of plan actions, actions in the branch, and
the number of these branches.

C. The simple strategy to the maximization of earned utility

The simplest algorithm for approximating equation (3)
relies on the observation that typical plans for the explo-
ration rover contain a few branch points, with a couple of
branches per point. The algorithm builds all K paths pk

in the contingent plan, then approximates each path utility
with:

V̂pk =
∑

bi∈pk

V̂ std
bi

(b(s)) (7)

and selects the best path in the plan:

b∗ = arg max
k=[1,K]

V̂pk(b(s)) (8)

Algorithm 1 returns the best path over the entire resource

1: Generate all branch paths in the contingent plan.
2: for all generated paths do
3: Proceed with MC on the path.
4: Return the path with the highest averaged utility.

Algorithm 1: Path maximization of average utility

space but that is not optimal for every value in this space:
certain level of resources a higher utility could be obtained
by executing a different path.

D. Sampling decisions
A solution to this problem is to sample the decision

itself by deciding the path with highest utility for each
sample, instead of using the max operator over a set of
pre-compiled paths. We write:

V̂ dec(b(s)) =
1

N

N∑
j=1

max
i∈[1,n]

V̂bi
(b(s)) (9)

Algorithm 2 differs from the previous one in that each

1: for all j < N do
2: Proceed with MC on the first branch.
3: for all branches bi at branch point do
4: Apply this algorithm recursively to bi, with j = 1.
5: Return the highest utility at this branch point (max).
6: Return the averaged utility of the plan.

Algorithm 2: Recursive procedure for sampling decisions

path is explored by each sample for the evaluation of the
max operator. The averaged returned utility is now near
optimal, but the sampled decision for the best branch (the
arg operator) depends on the sampled resource space that
must be partitioned into subregions of identical decision.
The next section covers the retrieval of the decision lines
in the multi-dimensional resource space.

IV. BOUNDING THE RESOURCE SPACE FOR DECIDING
FUTURE BRANCHES

Decision at branch points can be made based on the
simulation results by executing the branch with the highest
earned utility average. MC simulation is not particularly
efficient and the rover is forced to wait at branch points
while the plan is re-evaluated. However, simulation pro-
vides sufficient information for computing branch condi-
tions at future branch points. This operation is performed
at virtually no cost and can spare future simulation by
constraining future decisions while at current branch point
or floating branch insertion.

A. Producing bounds based on sampling decisions

Our first solution relies on the probabilistic guarantee of
the MC approach: we seek to ensure a convex1 resource
domain D(bi) ∈ R for each branch bi such that all samples
in D(bi) have bi as the branch with highest utility. We
enlarge bounds based on each sampled decision, then strip
out intersection among the branch bounds. This strategy is
easy to implement but leaves undecided zones at branch
points (the stripped areas), for which the MC simulation
has to be re-run whenever execution reaches that point.
A solution to this problem is to fit the branch sampled
value functions at branch point and study their intersection
to come up with a better approximation of the optimal
decision lines.

B. Approximating branch decision lines thru piecewise
constant value function approximation

Our second solution is to slice the resource domain into
rectangular bins and to fit the branch value functions in
each bin with a piecewise constant function, based on the
MC samples. Function intersections are found at bin edges.
Noting ∆r a bin in the resource space, we can write bi’s
value:

V̂bi
(b(s)) =

∑
∆r

∑
x∈X

p(bi | ∆r)p(∆r)V̂bi
(∆r, x) (10)

i.e. as the sum of the average utilities of bi in each bin
when it is the branch with the highest expected utility. More
precisely:

V̂bi
(∆r, x) =

1

nr∆r

∑
rj∈∆r

∑
x′∈X

V̂bi
(sj) (11)

with s = (x, r) and sj = (x′, rj), is the average utility of
bi on bin ∆r from the nr∆r

samples rj it contains,

p(bi | ∆r) =
1

nr∆r

∑
rj∈∆r

δ(bi = arg max
i∈[1,n]

V̂bi
(b(sj))

(12)
where δ is the Dirac function, is the probability for bi to
be the branch with the highest utility over the samples of
the bin,

p(∆r) =
nr∆r

N
(13)

is the probability of the bin itself. An optimal bin size W

is obtained, in the sense that it provides the most efficient
unbiased estimation of the probability distribution function
formed by the samples. We used W = 3.49σN−1/3

where σ is the standard deviation of the distribution, here
estimated from the samples [11], [12]. The overall strategy
is presented on algorithm 3.

Figure 2 pictures results for the second branch point of
our rover problem (the energy is pictured and the time line
is omitted) and shows the shifting branch conditions on the
horizontal axis that is the energy line. Branch conditions are
obtained by comparing the branch with the highest utility

1In the rover domain, value functions are monotonically increasing w.r.t.
time and energy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(a) p(bi | ∆r)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(b) V̂bi
(∆r)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b2

(c) p(bi|∆r)V̂bi
(∆r)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.5 1 1.5 2 2.5 3 3.5

(d) p(∆r)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.5 1 1.5 2 2.5 3 3.5

b3
b4
b5

(e) V̂bi
(b(s))

Fig. 2. Piecewise constant approximation of branch value functions from simulation samples

1: Proceed with algorithm 2 and collect samples at branch
point.

2: for all branch points in the contingent plan do
3: Compute the optimal bin size and slice the space

into bins.
4: Compute statistics with equations (11), (12) and

(13).
5: Evaluate equation (10) for each branch.
6: In each bin, identify the branch with the highest

value.
7: Identify new branch conditions where successive

bins have different highest utility branches.

Algorithm 3: Branch conditions approximation thru piece-
wise constant value function approximation

for each bin: if two successive bins return different results,
a branch condition exists at their edge. Thus, the precision
of the approximation is directly dependent on the optimal
bin size, that depends on the number of samples.

C. Belief update on re-evaluated branch conditions

As explained in subsection II-C, they are several situa-
tions when a plan must be re-evaluated. The change in the
belief state as returned by the health monitoring system is
problematic because it happens at a high frequency. We
observe that if no change occurs but for the belief updates,
then the branch value function can be approximated based
on the new belief state b′(s):

V̂bi
(b′(s)) ≈ V̂bi

(b(s))
∑
x∈X

∫
D(bi)

b′(x, r)dr (14)

whose last term is easily computed or estimated, and
Vbi

(b(s)) is known.

V. RESULTS

A. IS architecture for the execution of contingent plans
under uncertainty

The Intelligent System (IS) architecture for rover au-
tonomy at NASA Ames includes a high level contingent
planner [3], a hybrid model-based particle filter as the
health monitoring system [13], [14] and a concurrent
executive. The planner operates offline while the particle
filter and the executive run concurrently on the rover.
The planner uses a mission domain and nominal rover

model and produces a concurrent plan with branch points
at critical time and energy points. The executive is fed
with the plan and follows branch conditions at branch
point until it detects a plan re-evaluation is necessary. The
particle filter gets raw data from the rover sensors and
estimates a hybrid state of the system and its environment:
discrete wheel states (running, stopped, stucked), discrete
terrain states (rocky, flat), sensor fault modes as well as
numerous continuous variables to support them. For now,
the executive incorporates the discrete modes only. We
use pre-estimated action models for each of the faults.
In the future we will look into the estimation of these
action models at runtime. Our testbed has been a high-end
simulator (Mars Simulation Facility, MSF) that connects to
both the executive and the monitoring system.

B. algorithms testing

1) Monte Carlo results: We first assess the results of
both MC algorithms. We use two plans generated by the
contingent planner. MSL demo is a plan designed for
the future Mars Science Lab mission rover. This is a test
plan, so it has a small number of actions, and a loose
temporal network. The K9 demo plan is a real plan to
be executed on the rover during the upcoming demo at
Ames: it contains a single branch point, but each branch
has a high number of actions and a dense temporal network
among them. Both algorithms run in the same time frame
on the MSL plan but the Simple decision making returns
less optimal results. On the more complicated K9 plan, the
simple algorithm takes longer to execute as it re-evaluates
overlapping parts of the plan paths several times.

2) Branch conditions results: Second, we assess the
re-evaluated branch conditions at plan branch points:
bounds/bins are generated with the sampling decision al-
gorithm, and verified by running a classical Monte-Carlo
simulation, that does not maximize the utility, but follows
the new branch conditions and averages the earned utility.
Simulation also returns the failure probability of the plan.
The error is the difference to the optimal plan value in
percentage. The piecewise constant approximation of the
branch value functions returns highest utility and lower
failure probability.

C. Running example

Our running example has the rover exploring three rocks
on MSF and performing twenty eight actions including

MSL demo
N Smpl dec (V/time) Simple (V/time)

100 14.21 0.03 11.72 0.05
500 13.618 0.16 11.744 0.16
2500 13.8244 0.78 11.7648 0.78
12500 13.8008 4.08 11.7658 4.1
62500 13.7835 20.79 11.7611 20.95

312500 13.7717 120.3 11.7609 133.14
500000 13.777 223.89 11.7616 250.21

K9 demo
N Smpl dec (V/time) Simple (V/time)

100 269 0.22 250 0.38
500 266.7 1.25 250 1.85
2500 266.24 6.15 250 9.47
12500 266.372 30.11 250 46.66
62500 266.282 154.89 250 234.45

TABLE I

MSL demo
N Smpl dec (V/fail/err (%)) Pwc dec (V/fail/err (%))

100 9.59 0.19 32.5 10.9 0.25 23.3
500 9.738 0.054 28.5 9.732 0.224 28.53
2500 10.16 0.1716 26.5 11.2992 0.196 18.26
12500 10.4896 0.3692 24 11.9542 0.24488 13.27
62500 10.518 0.428096 23.7 12.156 0.249968 11.8

312500 10.5661 0.516698 23.27 12.1214 0.245722 12
500000 10.5825 0.58638 23.18 12.1814 0.240218 11.58

K9 demo
N Smpl dec (V/fail/err (%)) Pwc dec (V/fail/err (%))

100 113 0 58 229.5 0.22 14.6
500 140 0 47.5 245.8 0.108 7.8
2500 115 0 56.8 250.8 0.0776 5.8
12500 111.708 0.00016 58 246.536 0.10792 7.4
62500 104.86 0 60.6 248.231 0.0916 6.8

TABLE II

navigating, tracking rocks and performing analysis of their
structure. The health monitoring system assesses wheels
behavior, and in particular a faulty mode that is due to a
rock stuck in a wheel. Using the belief update at 10Hz, the
executive continuously assesses the possibility of triggering
a floating branch referred to as ’rover wheel dance’, that
drives a little in reverse then forward to shake the rock
off the wheel. Besides, the executive re-evaluates the plan
at branch point when either the action cost model or the
reward model change.

VI. CONCLUSION

We have presented a simple strategy for the robust exe-
cution of contingent plans under uncertainty. It re-evaluates
branch value functions at branch point, re-estimates branch
conditions whenever necessary, and allows runtime inser-
tion/replacement of plan portion with floating branches.
This is the first step towards the development of powerful
techniques for planning and execution under uncertainty.
The MC approach is flexible and provides good results
in any situation given that a sufficiently high number of
samples is used. The algorithms presented are a baseline
capability, and will be used later to assess the quality of
more complex and focused approaches.

Other works include [15] that studies plan execution
where there is uncertainty on the resource consumption.

However, the executed plans are no contingent plans in
the sense branch execution is not conditionned on decision
functions over the resource state.

Future work includes pre-computing more advanced
branch value functions at planning time [9], and research-
ing methods for re-evaluating plans with concurrent ac-
tions.

REFERENCES

[1] L. Pedersen, M. Bualat, D. Lees, D. Smith, and R. Washington,
“Integrated demonstration of instrument placement, robust execution
and contingent planning,” in Proceedings of the 7th Int. Symp. on
Artificial Intelligence, Robotics and Automation in Space, 2003.

[2] J. Bresina, R. Dearden, S. Ramkrishnan, D. Smith, and R. Wash-
ington, “Planning under continuous time and resource uncertainty:
A challenge for ai,” in Proceeddings of the Eighteenth Conference
on Uncertainty in Artificial Intelligence, 2002.

[3] R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and R. Wash-
ington, “Incremental contingency planning,” in ICAPS-03: Proceed-
ings of the Workshop on Planning under Uncertainty and Incomplete
Information, 2003, pp. 415–428.

[4] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, pp. 99–134, 1998.

[5] J. Boyan and M. Littman, “Exact solutions to time-dependent mdps,”
in Advances in Neural Information Processing Systems 13, 2000, pp.
1–7.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-
tion, B. Books, Ed. MIT Press, Cambridge, MA, 1998, 1998.

[7] S. Thrun, “Monte carlo POMDPs,” in Advances in Neural Informa-
tion Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller,
Eds. MIT Press, 2000, pp. 1064–1070.

[8] N. Meuleau, R. Dearden, and R. Washington, “Scaling up decision
theoretic planning to planetary rover problems,” in AAAI-04: Pro-
ceedings of the Workshop on Learning and Planning in Markov
Processes - Advances and Challenges, 2004.

[9] Z. Feng, N. Meuleau, and R. Washington, “Dynamic programming
for structured continuous markov decision problems,” in Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence,
2004.

[10] R. Washington and D. Lees, “Utility-based plan insertion for con-
tinuous resources,” in Proceedins of the IEEE 2004 International
Conference on Robotics and Automation, 2004.

[11] S. D., “On optimal and data-based histograms,” Biometrika, vol. 66,
pp. 605–610, 1976.

[12] I. A.J., “Recent developments in non parametric density estimation,”
Journal of the American Statistical Association, vol. 413, no. 86, pp.
205–224, 1991.

[13] F. Hutter and R. Dearden, “The gaussian particle filter for diagnosis
of non-linear systems,” in Proceedings of the Fourteenth Interna-
tional Workshop on the Principles of Diagnosis, Washington, DC,
2003.

[14] T. K. Willeke and R. Dearden, “Building hybrid rover models:
Lessons learned,” in Proceedings of the Fifteenth International
Workshop on the Principles of Diagnosis, 2004.

[15] J. Gough, M. Fox, and D. Long, “Plan execution under resource
consumption uncertainty,” in Proceedings of the Workshop on Con-
necting Planning Theory with Practice at ICAPS-04, 2004, pp. 24–
29.

