
Automatic Mapping of Dynamic Office Environments

Clayton Kunz(1)
Thomas Willeke(2)

Illah R. Nourbakhsh(3)

(1) Silicon Graphics, Inc.
(2)Mobot, Inc.

(3)The Robotics Institute, Carnegie Mellon University

1 INTRODUCTION

Research in automatic robot mapping has made
significant strides in recent years. However, a critical
requisite for the use of these technologies in real-world
settings, the ability to function in unmodified and
populated office buildings, has remained out of reach.

In this paper, we present a robot architecture that enables
automatic mapping in unmodified office buildings during
normal business hours. The architecture that we describe,
which is an instance of the feature-extraction approach to
mapping and navigation, is also unique in its ability to
hypothesize the existence of unseen passages in its
environment and then test and validate its hypotheses
through exploration.

As will become clear throughout this paper, the most
unusual aspect of this work is the architecture’s heavy
reliance on odometry information. The inherent noise of
odometry is alleviated by depending upon symmetries
and collinearity properties that are valid in the indoor
office environment. Ranging sensors such as sonar are,
of course, critical to the present architecture; however,
the impact of ranging data is felt only indirectly by the
mapping algorithm, which infers environmental structure
based on the motion behavior of the robot.

In addition to describing this architecture in detail, we
present initial empirical results based on our ongoing
effort to test InductoBeast in various office buildings at
Stanford University and elsewhere. An important aspect
of this project is to demonstrate both reliable mapping
and, thereafter, reliable navigation in a significant
number of different venues and over a large set of trials.
The empirical tests reported here demonstrate the ease
with which InductoBeast can be introduced to a new

environment as well as its long-term navigation
reliability.

2 GOALS

The primary goal of this work is to develop a robot
navigation system that functions well enough to control
an unsupervised mobile robot functioning in a real office
environment. Because this top-level goal is somewhat
vague, we chose to identify the specific criteria to be
addressed as well as a list of the precise simplifying
assumptions that we would make. In sections 2.1 and 2.2,
we describe these criteria and simplifying assumptions in
detail.

2.1 Criteria for autonomous navigation

The criteria we impose on a robot navigator fall roughly
into two categories: criteria concerning the environment
of the robot (outside the robot’s control), and criteria
concerning the run-time behavior of the robot. First we
discuss a description of the types of environments in
which InductoBeast must operate.

• Dynamic Worlds
An autonomous navigator must function reliably in a
dynamic office environment. By dynamic we mean that
the environment will undergo unpredictable and transient
structural changes. Doors close and open; unexpected
obstacle sometimes block hallways partially or entirely;
humans crowd the hallways at lunchtime, and leave the
hallways empty at other times; et cetera. We therefore
require the navigator to function well under these
ordinary circumstances of structural change that are
common in all office buildings.

We require the robot to perform mapping and navigation
tasks during working hours in office environments. Thus,

2

all of the empirical results presented in Section 5 were
recorded in dynamic environments.

• Almost Autonomous Mapping
We believe that the robot must explore and map an
unfamiliar environment with no human input. We will,
however, allow human supervision in order to avert
disaster if the robot encounters stairs (the sonars will not
see stairs so we stand there to protect the robot). Thus the
term, “Almost Autonomous.”

• Insistent Exploration
The present work purposefully blurs the distinction
between exploration and navigation. If a human provides
InductoBeast with a navigation goal, it will honor that
goal before continuing with exploration. But even that
navigation task will be transformed, whenever possible,
into an episode of exploration. For instance, if the
hallway geometry suggests a possible shortcut to the goal
point, InductoBeast will try to find and use that shortcut
before reverting to a known path to the goal (thus the
name, InductoBeast, derived from induction).

The concept of continuous exploration is not only
intellectually appealing, it is a requisite to being able to
handle dynamic worlds. Since the world is ever-
changing, it is up to the robot to continuously detect
changes to its world model and thereby track the
changing world. The robot is always an explorer.

• Reliable Navigation
InductoBeast must be able to travel to any point in its
map consistently and with neither human help nor human
supervision. The most important facet of this goal is that
we require InductoBeast to demonstrate significant
reliability over the long term, using large numbers of
navigation runs in a wide variety of building layouts.

Controls in such real-world tests are extremely hard to
institute. Our self-imposed rules included testing only
during normal office hours, testing for a minimum of 3
hours, and performing no training of the personnel in the
environment.

2.2 Simplifying assumptions

The following is an exhaustive discussion of simplifying
assumptions we have made. The small number and easy
satisfiability of these assumptions have been crucial in
enabling us to introduce InductoBeast to various
buildings without modifying the robot architecture.

Ongoing research involves exploration of techniques for
relaxing some of these assumptions, most notably the
Rectilinearity assumption. Our newest research results
indicate that a complete shift from range-based
navigation (e.g. sonar, infrared, etc.) to visual navigation
is key to eliminating this assumption most effectively.

• Rectilinearity
The strongest assumption we make is that the office
building in question is rectilinear; that is, all intersections
join halls at angles of 90 or 180 degrees. This assumption
rules out some office buildings. Note, however, that open
areas such as foyers may be of any shape.

• Hallway Widths
Our second assumption is a relaxation of the ultimate
autonomy goal: that the robot learn to navigate a new
office building with zero a priori knowledge of the
floorplan. We allow the robot one piece of information
about a new office building: an approximate range of
hallway widths. This simple piece of information greatly
simplifies discrimination of hallways from open areas.

• Intersection Separation
InductoBeast’s final assumption is that adjacent hallway
intersections are always separated by a minimum distance
of 6 feet. As with hallway width information, this
assumption helps InductoBeast distinguish between
changes in the topology of one hallway (a transient, wider
portion) and a new hallway.

There is one type of intersection that this assumption
rules out: the staggered intersection, depicted in Figure 1.

Figure 1: An example of a staggered hallway, a
topology assumed out of existence by
InductoBeast.

Together, the above set of assumptions and the goals in
Section 2.1 define the problem InductoBeast is slated to
solve. The most important elements of this problem,
then, are that the robot navigator must map and navigate
competently, taking advantage of potential shortcuts
whenever possible. And, it must do so without human

3

intervention, in the dynamic real world of an office
building during working hours.

In the following sections, we describe the basic
architecture for mapping, induction and navigation.
Then, we go on to describe the implemented robot system
and associated empirical results.

3 ARCHITECTURE

The architecture of our system is best understood
visually. The system is divided between the high level
control and reasoning and lower level robot behaviors.
High level control is further divided into six sections,
shown in Figure 2 below. The ovals represent separate
modules while the arcs represent the transfer of
information between modules via shared data structures.

It is important to note that the control architecture we
describe is single-threaded (see Section 4). The modules
in Figure 2 are not loosely coupled, autonomous modules
that execute in parallel, as one would expect from a
behavior-based architecture. Rather, this modularization
represents the classification of the control code into
distinct competencies. A single thread of control calls
upon functions that belong to each of these modules as
needed during the robot’s execution.

As implemented, the system is not as clean as the graph
indicates; additional lines of communication have been
required in order to capture side effects between the
reasoning module and the planner, for instance. Sections
3.1 through 3.3 describe the six components in Figure 2,
and expand upon the unique characteristics of this
architecture and its learning and planning components.

3.1 High-level components of the
architecture

• Explorer
The basic function of the robot is to expand the extent of
its map. For this behavior to be deliberate rather than just
coincidental, the robot must actively pursue the goal of
moving to the frontier of its map, then stepping beyond it.
Unless a human interacts with InductoBeast, it will
function by calling the planner with a goal set composed
of locations at the fringes of its map. The planner finds a
path to the nearest fringe, and the robot executor proceeds
to take the robot to the edge of its map, and then beyond.

• Planner

Navigation requires planning. This module is actually the
simplest of the six, as planning is well-defined. Given
the gross scale of the map, planning is also very fast
because of the high degree of geometric abstraction. The
planner is

map

plannerexplorer

executor

reasoning
& hypothesizing

hypothesis
verification

Figure 2: Abstract architecture of InductoBeast.

called either by the explorer module, or if a human
indicates a user-specified goal to InductoBeast by
clicking on a particular location of the map.

The planner conducts polynomial-time search via
breadth-first search with marked nodes. The search
algorithm is similar to standard cell decomposition and
subsequent potential field cell growth.

An important aspect of the planner’s search algorithm is
that explicit, hypothesized (and as yet untested) hallways
are used as well as validated routes. Therefore, the
planner returns the shortest-length hypothetical solution
for traveling from the current location to the goal
location.

• Executor
In the simplest case, the executor’s job is to control
execution of the planner’s output. If the planner’s
solution makes exclusive use of valid hallways, then this
is merely a navigation exercise, and the executor’s part is
straightforward.

However, when the solution plan contains traversals of
hypothetical hallways, then the executor is responsible for
ensuring that the behavior of the robot is graceful if the
hypothetical hallway is proven not to exist after all.

4

When traversal of a hallway is complete, the hypothesis
verification module determines either success, when the
encoder values validate the hypothesis, or failure, when
the encoder values indicate that the robot is in an
unexpected location. At this point, the executor is
responsible for testing the validity of the remaining plan
steps, re-invoking the planner as needed on the now
updated world map. This process of plan re-invocation
and map modification repeats until the robot achieves its
goal location.

• Map
The map is a simple graph that represents the topology of
the office building. Intersections and transitions between
hallways and open areas are represented by nodes in the
graph. Each node contains information about relative
location, the behavior used to navigate between nodes,
and whether or not adjacent nodes have been visited.

Behavior choices are left wall follow, right wall follow,
and corridor follow. The latter is used in well-defined
hallways while all other open areas are navigated with the
first two behaviors.

An important aspect of the map is that it captures not
only the experimentally demonstrated topology of the
environment, but also contains all hypothetical
connectivity (marked as such). Thus, the planner is able
to find solutions in a search space that is really the union
of the known and the hypothetical.

• Reasoning and hypothesizing
This module does not involve any robot control, but
rather manipulates the map directly. Every time the map
changes, an event is generated that triggers this module to
reexamine the map and generate appropriate hypothetical
hallways based on building and collinearity. Any
collinear intersections are assumed to be connected by a
hallway or set of hallways (until proven otherwise).

An interesting effect of this module involves retraction of
hypotheses: when InductoBeast explores a hypothetical
hallway, only to discover that its proposed topology was
wrong, then the Hypothesis Verification module will
immediately modify the map to make it consistent with
the observed connectivity. But this map modification
once again triggers the present module, causing new
hypotheses to be generated in keeping with the most
recently observed data. Thus, the interplay between this
and other modules can lead to a very rapid “evolution” of
the map as InductoBeast explores and modifies its map in
an interleaved fashion.

• Hypothesis verification
This is a difficult component to implement because it
combines competences from exploration and plan
execution. On the one hand, the terrain being traversed is
novel, so exploration is required. On the other hand, a
path has been predicted through the terrain, and so this
path must be checked for correctness. Hypothesis
verification not only determines if the hypothetical
hallway exists; it must also determine whether the robot
reaches known intersections or is truly exploring a new
area.

This module functions by comparing estimates of the
robot’s position in its map with the actual ground track
observed during navigation. Recall that the robot
“localizes” primarily using encoder data, depending on
sonar range-finding data only insofar as that information
impacts the robot’s motion over time in behaviors such as
corridor-follow. Given the rectilinearity assumption,
rotational drift becomes a non-problem (since hallways
are assumed straight), and linear distance traveled
becomes the primary navigation information, based on
encoder values.

3.2 Motivation of architecture

Our robot is unusual in that the high level controller takes
nearly all of its information about the world from the
robot’s behavior over time rather than the robot’s sensors.
Though the robot behavior itself is dependant upon the
sensors, there is a large difference in abstraction. The
code which controls behavior is very simple and reactive;
thus by using the behaviors for our map we avoid the
need for a costly feature extractor and get high level
information almost for free. For example, if the robots
heading changes by 90 degrees, we know we have turned
a corner without having to extract this information from
the sonar data. This reliance upon behavior rather than
sensor values makes the robot more resistant to sonar
inaccuracies, glitches, and obstacles during mapping.
Since none of this information is directly captured by the
map, InductoBeast ignores transient sonar readings and
temporary obstacles during subsequent navigation
episodes.

An interesting result of this is that our map is not just a
topological map, but also a behavioral map. It records
which motion behaviors will be needed to get from one
intersection to the next, on the simple theory that if those
behaviors worked when InductoBeast first mapped the
area, they should work on subsequent navigation tasks.

5

Figure 2 implies that hypothesis generation can modify
the map that is used during navigation. The result of this
coupling is a dynamic map. We believe that a dynamic
map is more realistic than a static map, since the world is
itself dynamic. Coupled with intelligent exploration, the
robot will be able to recover from hallways that are
completely blocked off during navigation, even if its map
indicates that no detour exists (assuming such a detour
actually exists).

3.3 Learning and planning

Reasoning and learning appear in several guises
throughout this work. InductoBeast proposes
hypothetical hallways based on office building symmetry
and the collinearity of mapped intersections. Abduction,
the standard mapping method, occurs whenever such
hypothetical hallways are verified and during normal
mapping (Shanahan 1995). The architecture depicted by
Figure 2 is designed to facilitate both of these types of
reasoning.

Planning occurs in two places: a human can specify any
intersection as a goal, and the robot will plan and execute
a path to it. Planning also takes place during intelligent
exploration. The robot always seeks to increase its
knowledge about world topology. Whenever intelligent
exploration is called for, the robot plans a path to the
nearest location where the map indicates that unexplored
territory may lie. Replanning occurs in three cases: when
the robot encounters an impassable obstacle; when the
robot explores and rejects an inductively proposed
shortcut to its goal position; or when the inductively
proposed shortcut exists but does not go where expected.

4 IMPLEMENTATION

We implemented the above architecture using a Nomad
150 robot, controlled by a Macintosh Common Lisp 2.01
program running on a Macintosh Powerbook 170. The
Nomad 150 is equipped with motor shaft encoders and
with 16 sonars arranged radially.

4.1 High-level robot control

The map representation is simply an annotated graph in
which nodes represent intersections and arcs represent
methods for traveling between intersections. Each node
may have up to four arcs pointing from it to other nodes
(this limitation follows from the rectilinearity
assumption). Each arc has a mode of travel (hall or wall
follow), a distance (a scalar or vector, depending on

travel mode), and an arc type (verified, hypothetical,
blocked, wall, unexplored) associated with it.

The robot has two basic motion states: exploration and
navigation. Whenever the robot has no human-given
navigation goal, it will attempt to expand its map by
traveling to unexplored places. InductoBeast will add
new intersections during exploration in the following
circumstances:
 • a corner in the hallway is detected, by observing that

the robot’s direction of travel has changed
 • an opening long enough to travel through is detected by

examining a series of side sonar range values
 • a hallway is detected after the robot has been in an

open area

When an opening is detected during exploration of a new
hallway, the robot assumes that it has entered an open
area and switches from hallway follow mode to wall
follow mode. If InductoBeast has never been to this
location before it will attempt to follow the wall that has
disappeared from sight (i.e. it will turn into the opening).
If it has been through this intersection before it will
explore new ground by following the wall opposite from
the opening. Openings and hallways are detected using
moving-window averages of recent sonar values.

The second motion state, navigation, is engaged when a
human gives InductoBeast a goal. When this occurs,
InductoBeast behaves like a traditional robot, planning
and executing a path to the destination. But because the
planner does not distinguish between valid hallways and
hypothesized, unexplored hallways, InductoBeast’s path
may use a hypothetical connection. Therefore, during
execution, the verification component monitors
navigation and replans if the hypothetical connection
turns out to be incorrect.

4.2 Navigation and localization

The planner’s output is an ordered list of adjacent nodes.
Based on this list and the map, InductoBeast determines
the distance and direction to travel between each pair of
nodes. The map annotations also indicate whether
InductoBeast should use hall- or wall-follow behavior.
To determine when it has reached the goal node,
InductoBeast compares the distance it has travelled since
the start node to the distance it should travel to reach the
destination node using relative encoder values. If the
mode of travel is wall-follow, InductoBeast also looks for
the presence of a hallway as an exit condition.

6

InductoBeast also avoids obstacles as it travels. This is
implemented in a low-level black box module utilizing
case-based motion vectors to discretely approximate a
potential field approach (Khatib 1986; Nourbakhsh et al.
1995). At the high level we need only to execute a
function called move which controls all of the robots
forward motion and obstacle avoidance. When it is in
hall-follow mode, InductoBeast also attempts to remain
centered in the hallway in the absence of obstacles.

To compensate for encoder drift, the robot’s conception
of straight is adjusted approximately every 12 feet during
hallway travel to match the actual trajectory that the
robot has taken during that period. Reasoning about
obstacles is extremely simple; we use a case-based
system that directs the robot toward the area with the
greatest freespace.

Our localization system is unusual in that it ignores sonar
data completely. We localize from node to node using
relative encoder values, the compensated conception of
straight ahead, and the rectilinearity assumption. The
encoders are accurate to within a few linear inches after
the robot has traveled the length of a hallway. Our
strategy of localizing after each leg eliminates potentially
cumulative encoder errors that can be caused if the
encoder values are used over more than the length of a
single hallway.

Conventional wisdom states that reliance on encoder
values for localization is doomed because of cumulative
drift. As our empirical results indicate, we have found
this to be untrue in the case of rectilinear office buildings.
Of course, this is due in part to our rectilinearity
assumption since it is well known that the key source of
encoder error in mobile robotics is rotational drift and not
linear inaccuracy.

5 EMPIRICAL RESULTS

We have conducted empirical tests to demonstrate both
accurate mapping and reliable navigation using
InductoBeast’s own maps. During the exploration phase,
we did not allow dynamic obstacles to interfere with
InductoBeast in open areas, although humans regularly
passed InductoBeast in hallways. During the navigation
phase, we were primarily interested in demonstrating that
the maps InductoBeast generates are sufficiently accurate
for reliable navigation. Again, we barred malicious
humans from open areas although we allowed normal
interaction in hallways.

We have tested InductoBeast in the Gates Computer
Science building and the Psychology building on the
Stanford campus, and in the robot contest arena at AAAI
1996. The development of the code took place entirely in
the Gates building; the only parameters modified between
subsequent locales were the hallway width ranges and
minimum distance required between adjacent
intersections. Under no circumstances were tape
measures used nor were InductoBeast’s maps manually
modified.

The following subsections briefly describe these venues.

• Development in the Gates building
InductoBeast was developed entirely in the Gates
building. InductoBeast (then known as InductoBeastie
3000) was successfully demonstrated at the AAAI Spring
Symposium at Stanford in March 1996, during which the
robot made 5 exploration runs and navigation runs
through crowded hallways, with no collisions and without
any failures.

InductoBeast underwent several changes after the
symposium, the most major of which was the ability to
navigate through open areas by wall following. During
this phase of development, which spanned approximately
160 hours of testing, InductoBeast collided with walls
fewer than five times.

Figure 3: InductoBeast’s map of two wings of the
second floor of the Gates Computer Science
building at Stanford.

• Foreign environment test in the Psychology building
We tested InductoBeast on the second floor of Stanford’s
psychology building during normal business hours with
no code or parameter changes. InductoBeast performed
extremely well on its first run, producing a map which
was topologically correct but composed mostly of open
areas due to the fact that the psychology building has
much wider corridors than Gates. After we increased the
approximate hallway width parameter by 3 feet,
InductoBeast produced the map shown in Figure 4.

7

Figure 4: The map made by the third run that
InductoBeast made in the 2nd floor of the
Psychology building at Stanford, after the hallway
width parameter was adjusted. The gray lines are
hypothetical hallways.

• Artificial benchmark environment at AAAI
The AAAI ’98 robot contest included a robot navigation
and meeting coordination task. For this contest, an
artificial office environment consisting of approximately
7 hallways, 1 foyer and 8 rooms was set up in a large
convention center in Seattle, WA. The walls were built
of partition material normally found in office buildings
with cubicles.

This contest maze is smaller and less cluttered than most
office building floors, which makes it at the same time
unrealistic and extremely useful, because situations can
be easily constructed and repeated. An exciting measure
of unpredictability was due to the fact that this office
environment was populated, not by humans alone, but by
mobile robots and their programmers. Teams
participating in the national robot contest were testing
their robot navigation systems day and night in this
environment, and it is in this crowded robot environment
that InductoBeast was tested.

InductoBeast successfully constructed 5 maps of the
arena in less than five hours running time, from various
starting locations, over the course of two days. Figure 5
depicts one of the 5 maps.

We also tested these maps’ accuracy by running long-
term navigation tasks. We designed a random goal
selector to demonstrate the robustness with which
InductoBeast navigates; at AAAI, 58 plans were executed
successfully out of 60 attempts. One of the two failures
was due to a programming error that was corrected, and
the second error was due to a Mac OS crash.

InductoBeast never collided with any walls, chairs or
tables during any of these exploration and navigation
tests. In fact, the only collisions that took place occurred

when other robots hit InductoBeast while it was
stationary.

Figure 5: One of the maps generated in the AAAI
’96 contest arena.

• Building and navigation statistic
Table 1 summarizes the results of experiments conducted
with InductoBeast during normal business hours with
human and robot traffic. During the navigation portion of
testing, tasks were invented based on a randomly
generated sequence of desired goal positions. These
positions were given in turn to InductoBeast, which then
had to complete the navigation tasks.

Location Gates AAAI
intersections 12 9
hallways 11 8
open areas 2 3
total navigable length 387 257
total # navigation runs 50 60
total navigation hours 3.5 3
contacts / hr. 0 0
collisions / hr. 0 0
navigation success rate 96% 96.7%
navigation failure rate 4% 1.7%

Table 1: Empirical results for InductoBeast
in two office environments.

Terms:
open area A path through a physical open area
navigable length The distance in feet between two

nodes
contact Non-fatal touch between robot and

environment
collision A robot-environment touch requiring restart
navigation success rate Percentage of random

navigation runs in which the robot reached its
destination

navigation failure rate Percentage of random
navigation runs in which the robot got lost — this

8

plus the success rate may not sum to 100 if, for
instance, batteries die, or the computer’s operating
system crashes.

6 RELATED WORK

Indoor automatic mapping research can be split broadly
into two categories: geometric methods and feature-
based, or topological methods. Geometric approaches to
map-building have the end-goal of constructing a two-
dimensional map of the environment, from which global
geometric properties of the world may be deduced. Both
continuous, solid geometry-based approaches and
occupancy grid approaches (Moravec & Elfes 1985);
(Elfes 1987) fall in this category.

In the geometric map-building approaches, the map is
generally populated through the use of a series of discrete
sensor measurements. In general, such sensor
measurements are reduced to ranging values, both in the
case of sonar-based map-building (Thrun et al. 1998);
(Castellanos et al. 1997) and vision-based map-building
(Murray & Jennings 1997). In the case of (Thrun et al.
1998), a statistical analysis of the sensor data can remove
much of the sensor noise inherent in such discrete range
samples. The general approach of using imperfect
sensors combined with probabilistic models in a
geometric framework has been extremely successful as a
navigation architecture of late (Simmons & Koenig
1995), (Thrun, 1995).

An extremely important recent advancement is the use of
a priori, generic knowledge regarding domain symmetry
and collinearity to provide constraints on the map-
building process, resulting in more accurate geometric
representations of the environment (Thrun et al. 1998);
(Castellanos et al. 1997). Several researchers have
already demonstrated that this map post-processing step
can dramatically improve the overall map quality.

There is, however, a fundamental disadvantage to
geometric approaches that even this post-processing step
cannot overcome. Since geometric methods rely on
discrete ranging samples of the environment, any
environment in which the underlying geometry is
dynamic will proffer formidable challenges. Drastic
changes in an office building topology are one such
examples, but a much more subtle case would be a
populated building, with peoples, boxes and chairs on the
move.

Geometric automatic mapping systems are generally
capable only of monotonically creating their maps of the
world (Thrun et al. 1998); (Castellanos et al. 1997);
(Delahoche et al. 1998); (Araujo et al. 1998); (Vlassis &
Tsanakas 1998). Two notable exceptions are (Murray &
Jennings 1997) and (Yamauchi et al. 1998).

(Murray & Jennings 1997) have developed a three-
camera ranging system that serves as the sole ranging
sensor of a robot that automatically maps an office
environment. Their architecture has a reliance on a static
world; however, the robot’s mapping process is somewhat
dynamic, as it actively plans paths to areas of the
environment where its ranging information is insufficient
for generating a complete map.

(Yamauchi et al. 1998) explicitly mixes, or interleaves,
navigation with exploration at the planning level. Their
mobile robot plans navigation tasks explicitly to travel to
the edge of its known map. From such frontier points,
mapping continues until that vein of exploration is
exhausted. Thus, the map is dynamic. However, changes
to the map are only allowed at locations beyond the
frontier. Therefore, dynamics in areas of the world that
have already been explored cannot be captured; the
mapping process does not include any form of
nonmonotonicity as does InductoBeast in its ability to
produce and physically validate defeasible hypotheses.

In summary, geometric methods tend to suffer from their
reliance on static environments, and an examination of
the experimental setups of such research validates that
tests are generally performed in controlled settings,
frequently in small subregions of a much larger,
navigable environment (Castellanos et al. 1997), (Murray
& Jennings 1997); (Delahoche et al. 1998), (Cahut et al.
1998); (Castellanos 1998); (Araujo 1998).

In contrast to geometric map-building approaches,
feature-based methods identify locally unique areas in the
environment (features) and determine the relative
positions of those features to one-another (Kuipers 1993),
(Gat 199?), (Rencken 1994); (Castellanos et al. 1998);
(Cahut et al. 1998).

Feature-based mapping is attractive because transient
errors inherent in ranging sensors can have less impact on
the resulting map. The philosophy behind this approach
is that the robot does not require a detailed, geometric
map of the environment to function effectively.
Therefore, construction of a detailed map, along with the
necessary error compensation computations, are a waste
of computation. Instead, feature-based researchers

9

attempt to identify the minimum information required for
robust navigation, then capture that information in a
topological map that frequently includes a limited amount
of geometric information as well (Gutierrez-Osuna &
Luo, 1996).

The learning community has attempted to identify
navigable features automatically; (Galles 1993)
implemented a Nomad 100 robot control system that
mapped part of Stanford’s computer science department
using TR-Tree representations to recognize “landmark”
locations, such as intersections, then navigate between
them. In this research, feature detection was not
sufficiently reliable to enable robust navigation after
completion of the training stage.

(Kuipers et al. 1993) also focused on identifying
distinctive positions and noting control methods for
navigating between them. In this case, however, the
schema for unique locations, or features, were determined
by the researchers and not by a classification system. But
as with the geometric approaches, both Galles’ and
Kuipers’ system are limited to static environments
because their feature extraction strategies depend upon
discrete ranging measurements of the environment.
Indeed, feature extraction based on corner features and
intersection features can be extremely susceptible to the
transient “noise” introduced by human presence, since a
flat wall may be mistaken for a corner if a person stands
beside the wall.

Indeed, identification of features based on a ranging
snapshot of the environment is the norm in this
community; (Cahut et al. 1998) uses correlative
techniques to cluster sonar strikes into line segments,
constructing a navigation map based on the subsequent
set of line segments. (Castellanos et al. 1998) use both a
laser rangefinder and a CCD camera to identify and range
vertical edges in the scene. In this work, line segments
are only an intermediate representation in the effort to
identify two high-level features: corners (formed by
intersecting line segments) and semiplanes (derived from
the free endpoints of line segments).

A more recent feature-based mapping system by (Chong
& Kleeman 1997) improves upon earlier work in this area
in two ways. (Chong & Kleeman 1997) make use of
collinearity constraints that are viable in an indoor
environment, thereby reducing their dependence on single
sensor readings somewhat. They have also manufactured
a custom feature sensor consisting of multiple sonar
transducers and mounted on a pan axis, that detects
corners with high accuracy.

However, the same fundamental limitations apply to this
group of feature-based mapping research: these methods
depend upon the static world assumption, and
experimental evidence of success is limited to small-scale
tests in artificial environments.

Given that the feature-based approach does not depend as
critically on the detailed environmental geometry, it may
come as a surprise that there is a lack of large-scale
empirical results using this approach in real-world
environments. The reason for this shortcoming has to do
with the small set of features used (Kuipers et al. 1993),
(Chong & Kleeman 1997). Real office buildings have
geometries that are far more complex that the
composition of simple corners, perfectly flat walls and
intersections. As a result, the design of feature extractors
that are robust with respect to these real-world vagaries
(indentations; foyers; ledges, et cetera) has proved
extremely challenging. This explains why much of the
body of real-world mapping results has been achieved in
artificial environments made from materials such as
cardboard (Delahoche et. al 1998); (Cahut et al. 1998);
(Kuipers et al. 1993).

InductoBeast is fundamentally a feature-based system.
However, the basic goal of this project was to implement
a mapping system that would succeed in a variety of
unmodified, real-world, dynamic environments. Thus, in
order to avoid the errors inherent in discrete sensors
measurements, be they for geometric extrapolation or for
feature extraction, we only use sensor measurements
indirectly.

Sensor measurements have a direct impact on the motion
characteristics of the InductoBeast robot. Feature
extraction consists of nothing more than the introspective
observation of motion patterns over time, primarily
through the observation of encoder values. But this
implies a significant reliance on encoders and is therefore
a source of cumulative error. The solution, as with
(Chong & Kleeman 1997) and (Thrun et. al 1998) is to
make use of characteristics generally true of indoor
environments. In our case, this meant specifically taking
advantage of the fact that office buildings frequently have
symmetry around an axis and can be tessellated into a
partial grid pattern.

InductoBeast improves upon previous work in this
direction by not stopping simply at the “map correction”
post-processing phase. This system also make use of
symmetry to hypothesize additional structure in parts of
the world that are still unseen, and then explore those

10

structures. This is consonant with the approach taken in
(Yamauchi et al. 1998), and stands in contrast to methods
in which the mobile robot does not explicitly plan and act
for the sake of information gain (Vlassis & Tsanakas
1998); (Araujo et al. 1998); (Delahoche et al. 1998);
(Thrun et al. 1998).

This additional step is crucial in enabling InductoBeast to
deal with dynamic worlds and with obstacles. Since the
present system looks at the motion behavior of the robot
over the long term, any transient sensor readings due to
dynamic obstacles are completely ignored during the
mapping process.

A final contribution of this present work is a set of
experimental results that, we hope, raise the bar for the
automatic mapping community. Real world tests have
been performed in office buildings at Stanford University
and also in the fabricated office environment of AAAI’s
National Robot Contest. In all cases, the environment
was heavily occupied, under normal business hours, by
untrained personnel. Indeed, in the case of AAAI, the
environment was continuously occupied by robots and
contestants of the robot contest. Under these conditions,
both the explicit accuracy of repeated mapping iterations
have been measured as well as the navigation reliability
of the robot, using its own, self-generated map of the
environment. Such long-term, real-world tests are crucial
to ensuring advancement of the state of the art.

7 CONCLUSIONS

InductoBeast’s strongest suit is that it works very well in
a variety of real-world environments. Furthermore, the
robot achieves reliability using a conceptually simple
algorithm. This simplicity represents an important lesson
we have learned through this work: always try the
simplest approach first. We have a firm belief, based on
the experiences of InductoBeast, that the indoor
navigation problem can be fully solved using extremely
simple methods.

Of course, malicious interference with the robot can
easily confuse such simple techniques. For instance,
physically picking up the robot and moving it to a new
portion of its world will guaranteeably confuse
InductoBeast, not least of all because it uses encoder
values for localization. To deal with such catastrophic
“failures,” we believe one would need to revert to more
complex methods for global localization. While
probabilistic techniques for using range data show great

promise in this respect (so long as the geometric map is
sufficiently accurate), perhaps the most robust long-term
solution would involve visual recognition of the robot’s
neighborhood.

In contrast to navigation under our simplifying
assumptions, learning represents a much more
challenging problem. InductoBeast’s learning component
depends heavily on a highly reliable and predictable low-
level motion package. Because we know what
environmental conditions will cause which behaviors to
fire, we can use InductoBeast’s behaviors as a set of mid-
level control tools to inform the learning system about the
type of environment the robot is exploring.

We have also found that the use of hypothetical hallways
can make learning and navigation more effective.
Mapping is simplified because not all hallways need to be
explored. Navigation can be more efficient because the
robot can use shortcuts that it has not even encountered
yet. Currently, InductoBeast uses only relatively simple
hypotheses. Future work will expand the manner in
which InductoBeast reasons about the map and
hypothesizes new hallways and intersections.

Finally, this project has made us aware of the significance
of having navigation competence in open, unstructured
areas. It is interesting to note that one of the major
stumbling blocks of probabilistic navigation systems has
also been the problem of dealing with open areas. In the
both cases, open areas are challenging because ranging is
a poor measurement technique in such spaces. Simply
put, the proportion of useful data to noise drops
precipitously.

When we first started this project, InductoBeast was
designed only to map and navigate in hallways. The
ability to traverse open areas by wall following was a later
addition. This was a large source of difficulty and
complication because the concepts and information
needed for open area navigation did not fit smoothly into
the map structure and general architecture designed for
hall following. If InductoBeast were to be rewritten, we
would consider open areas as the normal environmental
condition and hallways as a special case.

ACKNOWLEDGMENTS

Professor Michael Genesereth (Stanford University)
provided both intellectual motivation for this project to
proceed as well as the Nomad 150 mobile robot and

11

Powerbook 170. Thanks also to the reviewers, whose
thoughtful comments improved this article.

BIBLIOGRAPHY

Araujo, R., de Almeida, A.T. 1998. Map Building Using
Fuzzy ART, and Learning to Navigate a Mobile Robot
on an Unknown World. In Proceedings of the 1998
IEEE International Conference on Robotics &
Automation. Leuven, Belgium. 1998.

Castellanos, J.A., Tardos, J.D., Schmidt, G. Building a
global map of the environment of a mobile robot: The
importance of correlations. Proceedings of the 1997
IEEE Conference on Robotics and Automation . 1997.

Chong, K.S., Kleeman, L. 1997. Sonar based map
building for a mobile robot. Proceedings of the 1997
IEEE Conference on Robotics and Automation . 1997.

Delahoche, L., Pegard, C., Mouaddib, E.M., Vasseur, P.
1998. Incremental Map Building for Mobile Robot
Navigation in an Indoor Environment. In Proceedings
of the 1998 IEEE International Conference on Robotics
& Automation. Leuven, Belgium. 1998.

Elfes, A. 1987. Sonar-based real world mapping and
navigation. IEEE Journal of robotics and automation .
Vol. RA-3, No. 3. 249-265, 1987.

Galles, D. 1993. Map Building and Following Using
Teleo-Reactive Trees. Stanford Internal Report.
Stanford University Robotics Laboratory.

Gutierrez-Osuna, R. and Luo, R. 1996. LOLA:
Probabilistic Navigation for Topological Maps. AI
Magazine 17(1).

Khatib, O. 1986. Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots. The International
Journal of Robotics Research 5(1):90-98.

Kuipers, B., Froom, R., Lee, W-K. and Pierce, D. 1993.
The Semantic Hierarchy in Robot Learning. Robot
Learning. Jonathan Connell & Sridhar Mahadevan
(eds.), Kluwer Academic Publishers.

Murray, D., Jennings, C. 1997 Stereo vision based
mapping and navigation for mobile robots.
Proceedings of the 1997 IEEE Conference on Robotics
and Automation. 1997.

Nilsson, Nils. 1996. Challenge Problems for Artificial
Intelligence: Toward Flexible and Robust Robots,
Proceedings, Thirteenth National Conference on
Artificial Intelligence . pp. 1344-45, AAAI Press.

Nourbakhsh, I., Powers, R. and Birchfield, S. 1995.
Dervish, An Office-Navigating Robot. AI Magazine
16(2).

Racz, J., Dubrawski, A. 1995. Artificial neural network
for mobile robot topological localization. Robotics and
Autonomous Systems 16(1995): 73-80.

Shanahan, M. 1995. Default Reasoning about Spatial
Occupancy, Artificial Intelligence , vol. 74(1).

Simmons, R. and Koenig, S. 1995. Probabilistic robot
navigation in partially observable environments. In
Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence , Montreal,
Canada, Morgan Kaufmann.

Thrun, S. 1995. An approach to learning mobile robot
navigation. Robotics and Autonomous Systems
15(1995): 301-19.

Thrun, S., Fox, D., Burgard, W. 1998. Probabilistic
Mapping of an Environment by a Mobile Robot. In
Proceedings of the 1998 IEEE International
Conference on Robotics & Automation . Leuven,
Belgium. 1998.

Vlassis, N.A., Tsanakas. 1998. A Sensory Uncertainty
Field Model for Unknown and Non-stationary Mobile
Robot Environments. In Proceedings of the 1998 IEEE
International Conference on Robotics & Automation .
Leuven, Belgium. 1998.

Yamauchi, B., Schultz, A., Adams, W. 1998. Mobile
Robot Exploration and Map-Building with Continuous
Localization. In Proceedings of the 1998 IEEE
International Conference on Robotics & Automation .
Leuven, Belgium. 1998.

