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Abstract. Tensegrity structures are based on the idea of balanced struc-
tures composed of rigid bodies that are connected only by using tension
elements. Robots that are constructed using tensegrity principle can of-
fer many advantages such as being lightweight, impact tolerant or offer-
ing unique modes of locomotion. Controlling tensegrity robots has many
challenges due to their overall complexity and nonlinear coupling be-
tween components. In this paper we overcome these challenges by using
multiagent learning methods to control a ball shaped tensegrity robot.
Experimental results performed in a soft-body physics simulator show
that the single-agent learning system performs 80% better than a hand-
coded solution, while the multiagent learning systems performs 100%
better. In addition, learning is able to discover diverse control solutions
(both crawling and rolling) that are robust against structural failures and
can be adapted to a wide range of energy and actuation constraints. We
also discuss the different control strategies and hardware implementation
of the simulated robot.
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1 Introduction

Tensegrity structures is based on the idea of building balanced structures that
are composed of pure tension and compression elements (cables and rods - see
Figure 1). Since there are no bending or shear forces, each component of the
structure and overall structure can be lightweight. Moreover, since the rigid
components are connected via cables, any external force is internally distributed
to the structure. As there are no lever arms, forces do not magnify into joints
or other common points of failure. These facts increase system level robustness
of tensegrity structures and make them ideally suited to dynamic environments
with unpredicted contact forces.
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Compression Components 

Tensile Components 

Fig. 1: Tensegrity Structure. Tensegrities are composed of pure tension and
pure compression elements (e.g. cables and rods). They can be light-weight,
energy-efficient and robust to failures.

Structures built from tensegrities are well-suited for many robotic tasks where
robustness, low-weight and efficiency are desired. Tensegrities tend to be energy
efficient as the use of elastic tensile components and dynamical gaits, enable effi-
cient movement . Tensegrities tend to be light-weight as forces align axially with
components and shocks distribute through the tensegrity, allowing tensegrities
to be made of light-weight tubes/rods and cables/elastic lines. Also tensegrities
are naturally distributed systems and can gracefully degrade performance in the
event of actuation or structural failure. In addition to these structural proper-
ties, tensegrities are also capable of unique modes of locomotion, as they can
roll, crawl, gallop, swim or flap wings depending on construction and need.

Despite these desirable properties, tensegrity concept were not used in robotics
for many years due to difficult control properties. There are two main properties
of tensegrities that make them hard to control with traditional control algo-
rithms. First, a force generated on one part of the tensegrity propagates in a
non-linear way through the entire tensegrity. Second, tensegrity robots tend to
have oscillatory motions influenced by their interactions with their environment.
With many elements connected to each other, these two properties challenge
traditional controls. Fortunately these issues can be overcome through the use
of a centralized learning algorithm, and performance can be improved further
through multiagent learning. Multiagent learning is a natural match for tenseg-
rity control, as the forces in the tensegrity tend to propagate in a distributed way.



III

By assigning agents to control different portions of the tensegrity, an unified, yet
distributed control policy can be achieved.

In this paper, we present how a direct policy search based learning algo-
rithm and a multiagent system can be used to learn control policies that allow a
six segment tensegrity to roll through its environment. This paper is organized
as follows: Section 2 gives background on tensegrity robots and previous work.
Section 3 gives details about the tensegrity robot used in this paper. Section 4
shows how a learning algorithm can be used to create a control policy for our
tensegrity robot. Section 5 presents experimental results. Section 6 discusses
alternative control strategies and different activation approaches. Section 7 dis-
cusses hardware details. Section 8 ends the paper with conclusions and future
work.

2 Background and Previous Work

Tensegrity structures are a fairly modern concept, having been initially ex-
plored in the 1960’s by Buckminster Fuller [7] and the artist Kenneth Snelson
[19, 18]. For the first few decades, the majority of tensegrity related research
was concerned with form-finding techniques [25, 10, 20, 26, 13, 14] and the design
and analysis of static structures [1, 8, 17]. Research into control of tensegrity
structures was initiated in the mid-1990’s, with initial efforts at formalizing the
dynamics of tensegrity structures only recently emerging [17, 11, 24]. The very
properties that make tensegrities ideal for physical interaction with the envi-
ronment (compliance, multi-path load distribution, non-linear dynamics, etc)
also present significant challenges to traditional control approaches. A recent
review [21] shows that there are still many open problems in actively controlling
tensegrities.

There are several approaches that have been taken to control tensegrity
robots. Most related to the work in this paper are approaches to locomotion of
tensegrity robots using evolutionary algorithms [6]. Paul et al [12] shows two dif-
ferent tensegrity robots that can perform a locomotion movement. These robots
perform motion mostly by alternating between different configurations and doing
small hops and crawling. Being able to successfully evolve these gaits is impres-
sive given that one of the tensegrities uses only three rods, while the other uses
four. However, such simple tensegrities are not able to achieve efficient rolling
motion or complex dynamical movements, which is the main goal of this paper.

Instead of learning control policies for tensegrities, more recent work has
been done on engineering control algorithms that leverage key features of lo-
comotion [16, 2, 3]. There has also been recent work involving hand tuning of
controls for rolling tensegrity robots by body deformation [15, 9, 22, 5]. While
this work is able to produce stable smooth dynamics, they are not designed to
address the oscillatory nature of tensegrities that come up at high speeds, on
uneven terrain, or upon contacts with other objects that occurs in many do-
mains. Instead, with our learning approach, these oscillatory complexities of the
tensegrity are implicitly incorporated into the reward function generated from
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the physics simulations, and therefore we are able to create dynamical control
that can incorporate complexities of the domain as they arise.

3 Target Tensegrity Platform

In this paper we show how controls can be learned on a ball-shaped tensegrity
capable of a large range of movement. To do this we choose as our experimental
platform, a 6-rod, 24-cable tensegrity as shown in Figure 2. It is chosen since it is
one of the simplest tensegrity platforms that can exhibit the following complex
behaviors:

– Many modes of locomotion: They can crawl, “gallop” and roll, with
rolling being an especially efficient and fast mode of locomotion.

– Robust against failures: They exhibit enough redundancy that they can
recover from hardware failure.

– Shape changing: They can change shape to “peer” over things, get unstuck
or to move sensors located on tensegrity structure.

These “ball” tensegrities can be useful in many domains, especially those in
which a tensegrity has to navigate rugged terrains that can be difficult for
wheeled vehicles.

3.1 Structure

The structure of the tensegrity used in this paper is shown in Figure 2. As with
all tensegrities, rods never connect directly with other rods. Instead rods are
indirectly connected though cables. In the orientation shown in Figure 10 (left)
one pair of the rods are parallel to x-axis, another pair is parallel to y axis
and the last pair is parallel to z axis. Both ends of the rods are connected via
cables. Each end of a rod is connected to the ends of other non parallel rods
via 4 different cables. When the structure is in balance, it is symmetrical and
convenient for a rolling motion. On the other hand, when an external force is
applied, it easily deforms and distributes the force to every component of the
structures.

3.2 Controls

The tensegrity is controlled by changing the lengths of the cables. Many physical
designs do this by using a motor to pull the cable around a spool that is either
interior to the tensegrity or inside a rod. Other concepts involve ways of using
dynamic cable twisting or elastomers to change the shape of the cable. In this
paper, we discuss possible actuation implementations in Section 7. Also, we
analyze possible range limitations of control implementations in Section 5.1.

In principle it would be possible to provide individual controls to each of
the 24 cables in our tensegrity. However, to simplify our control problem, the
24 cables are put into 8 groups according to the symmetry of the structure
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Control'Groups'

Fig. 2: Controls. Tensegrity controls are broken down into eight groups contain-
ing three cables each (three of the groups are shown here). All of the three cables
in a group are set to the same target length. Using groups reduces complexity
over having to control 24 cables individually.

(see Figure 2). The structure is symmetrical according to x plane, y plane and
z plane, which divides the structure into front - back, left-right and top-down
segments. Each group contains 3 cables forming a triangle. Each of these groups
is controlled as a whole, with the control algorithm always setting the target
length of each of the three cables within a group to be the same.

The control of the robot is done via sinusoidal control of the lengths of the
cables. The lengths of the cables change over time according to a sinusoidal
signal, and the parameters of the signal are controlled by the agents. The value
of the cable is calculated with the formula:

y(t) = C +A ∗ sin(ωt+ φ) (1)

where,

– C, represents the center position of the sine wave.
– A, the amplitude, is the peak deviation of the function from its center posi-

tion.
– ω, the angular frequency, is how many oscillations occur in a unit time

interval
– φ, the phase, is specifies where in its cycle the oscillation begins at t = 0.

3.3 Simulation

Our tensegrity simulator is built on top of the open-source Bullet Physics Engine
[4]. Bullet was chosen because of its built in support for soft-bodied physics, and
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has been used previously in tendon-driven robotics simulators such as Wittmeier
et al’s CALIPER software [23]. Cables are represented as nodes with Hooke’s-
law-like stiffness between them. Therefore our “cables” are actually somewhat
elastic and exert a force dependent on their length. We keep our model of ac-
tuation abstract in order to explore the best control solutions and then drive
requirements back into real hardware design requirements. To enforce additional
realism, we prevent the cables being actuated when stretched more than 25%,
as an upper limit on the hypothetical motor force. This approach allows us to
find the types of control and requirements that will be driven into actuation
selection.

4 Learning Controls

While the control parameters of our tensegrity platform are relatively straight-
forward, the relationship between these parameters is highly complex. In this
section we explore how we can use the simulation combined with a reward evalua-
tion to implement a learning algorithm that can learn a set of control parameters
that leads to high performance.

4.1 Reward Evaluation

We measure the performance of a simulated tensegrity based on how far it can
travel from a starting location within 60 seconds:

r = d(C1, A1, ω1, φ1, · · · , C8, A8, ω8, φ8) , (2)

where, d is the distance travelled, which is a function of the 32 parameters of
the control policy. Note that the decomposition of the distance function d is not
readily obtainable in closed form. Instead it must be computed from observing
simulations or measured from a physical implementation. Also note that our
evaluation does not explicitly take any behavior into account besides distance
moved. Tensegrities can exhibit many different gaits, ranging from hopping to
rolling, and many different paths, ranging from spirals to straight lines. However,
tensegrities that maximize our reward function tend to roll in fairly straight lines.
Deviations from this pattern tend to hurt performance.

4.2 Single Agent Learning

In this paper, we perform both single agent learning and multiagent learning. In
the single agent case, a single control policy is learned for the entire tensegrity
robot. This control policy sets the 32 parameters for the sinusoidal controllers
for the eight groups of cables. The algorithm is a simple population-based direct
policy search that tries to learn a policy that maximizes our reward function.
At the beginning of training, a population of n random policies is created and
evaluated based on our reward function r. After each round of learning, the
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Algorithm 1: Multiagent learning algorithm for tensegrity control.

Data: Population of n elements for each agent
for i=1..15 do

random team ← ∅ ;
forall the Populations do

random team ← random agent;
end
score = evaluate random team ;
forall the agents ∈ random team do

if score > agent.score then
agent.score = score ;

end

end

end
forall the Populations do

order the population;
eliminate last k;
copy first k to last k;
set score of last k to MIN ;
mutate last k;

end

worst k policies are removed, and are replaced by mutated versions of the best
k policies 5. As learning progresses, the population tends to converge to higher
performance policies.

4.3 Multiagent Learning

In addition to single agent learning, we perform multiagent learning, where one
agent is assigned to each control group. Therefore there are 8 agents total, and
each agent is responsible for setting the values for the 4 parameters of the sinu-
soidal controller used for that group. These 4 parameters represent the control
policy of the agent. The goal of each agent is to create a control policy that
helps maximize the overall system reward function r defined in Equation 2 when
combined with the control policies of all the other agents.

In our multiagent learning system, each agent has a population of n policies.
First the performance of individual agent policies is assessed. This is done by
first creating 15 full system policies by sampling the agent policies uniformly.
Each system policy is then evaluated according to the full system reward r.
Each agent policy is then given the evaluation of the full system policy that it
participated in that received the highest reward. After the evaluation step, for
each agent the lowest performing k policies are removed, and are replaced by

5 This can be seen as a simple form of evolution with no cross-over. In related exper-
iments, no large performance differences are seen between this and non-population
based reinforcement learning
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the mutated versions of the best k policies. The pseudo-code for this algorithm
is as follows:

4.4 Hand-Coded Solution

In addition to creating control policies through learning, we explore how to
hand-code a control solution using the same parameters available to the learning
systems. The goal here is to explore the challenges of hand-coding a solution
and to see how well or best effort compares to our learned solutions. It turns out
that creating a control policy by hand using our 32 parameters is very difficult,
and the best achieved solution barely moved. This problem will only get more
difficult as we scale the tensegrity robots to more complex versions with more
elements. To improve performance, we reduced the parameter space by hand
coding the amplitudes of each group and making the oscillation frequency the
same for all groups. The results shown later in this paper are for this second,
better-performing hand-coded solution.

5 Experimental Results

In this section, we present experiments evaluating the performance of our learn-
ing methods to control tensegrity robots in the physics simulator described in
Section 3.3. The goal of our experiments is to evaluate whether learning systems
can be successfully applied to tensegrity robots under nominal conditions, and
how robust these solutions are to limitations in the range of actuation, to actua-
tor noise and to a physical breakage in a cable of the tensegrity. For the nominal
condition case we test the following methods of creating the controller:

– Hand Coded Control policy is developed by hand to try to achieve maxi-
mum performance.

– Single Agent Learning A single control policy is learned for the entire
tensegrity robot.

– Multiagent Learning A multiagent system learns the control policy for
tensegrity robot, with one agent assigned to each of the 8 control groups.

We then test the robustness of our highest performance solution (multiagent
learning as shown below) in the following ways:

– Actuation Range We limit how far the cables are allowed to contract, to
simulate designs where range may be limited and to simulate control modes
where low-power locomotion is needed.

– Actuation Noise We add noise to how far cables are actually moved as
compared to how far they are being requested to move.

– Cable Failure We test performance when a single cable in the robot breaks.

All experiments start with a stationary tensegrity robot on the ground. For
each experiment, the robots are created on a flat surface, and after 5 seconds of
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stabilization time, active control of the cables starts. The agents are given fixed
amount of time (60 seconds) to move the robot as far as possible. The evaluation
function is the distance between the starting position and the position at the end
of given time period. The population size in the policy search is set to n = 10
and the selection parameter is set to k = 5. We perform 10 statistical runs
for each type of experiment. Using a t-test we confirm that our conclusions are
statistically significant.

5.1 Nominal Conditions

Fig. 3: Evolutionary Approach vs. Hand Coded Agorithm. The policies
are evaluated according to how far the tensegrity can move in 60 seconds. Single
agent approach performs better than the hand coded policy. Multiagent approach
performs the best.

The first experiment compares three different control policies: Hand-coded,
single agent learning and multiagent learning. Figure 3 shows that both learn-
ing approaches can easily outperform the hand coded solution. The multiagent
learning approach provides the best performance by moving 20% more quickly
than the single agent and 100% more than our hand coded agent. Both single
agent and multiagent algorithms are able to achieve smooth rolling motions as
shown in Figure 4. Note that while our hand coded tensegrity is not able to
achieve a rolling motion, we are not trying to imply that this problem is im-
possibly complex for non-learning algorithms. In fact there have been several
successful algorithms to do this [15, 9, 22, 5]. Instead we are illustrating that it is
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Fig. 4: Tensegrity Dynamics. Tensegrity is able to achieve smooth rolling mo-
tion. This rolling is accomplished solely by changing the length of the cables. Our
learned control policies produce rolling that is also dynamical as the tensegrity
does not stop to setup next roll action. This type of rolling can be fast and highly
efficient.

in fact quite difficult to create these controls, and that the single agent and mul-
tiagent learning algorithms are creating complex, non-trivial control solutions.
In addition a multiagent framework has the potential to be adapted to many
different complex tensegrities with less effort than hand coding an algorithm for
each new tensegrity.

5.2 Actuation Range Limitations

In the next experiment, we test different maximum actuation ranges for the con-
troller. The maximum change in the rest length of a cable length is varied from
1% of the size of a tensegrity rod to 40%. Limiting the actuation range is done to
both simulate situations where our actual hardware has limited actuation range
(i.e. long range pulley/cable actuators, vs. short range electro-elastomers), and
to simulate situations where we want to reduce power requirements by limiting
actuation. Figure 5 shows that for multiagent controllers, after a 10% maximum
actuation range, additional range does not gain any more advantage. On the
other hand, decreasing these parameters results in robots that move less quickly.
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Fig. 5: Performances of Robot under Actuation Limitations. Limits on
the range that a cable can be contracted and expanded. The performance tops
with an actuation range equal to 10% of the length of a tensegrity rod. Lower
actuation range reduces speed, yet increasing actuation range beyond 10% does
not increase performance.

A controller that can only change its cable length 5% can only move the tenseg-
rity at 75% of the speed compared to a controller that can change the cable
length 10%. If we further decrease the range of actuation, performance declines
even more.

5.3 Actuation Noise

To measure the robustness of our learning approach against noise, we test the
multiagent tensegrity robot in an environment with different levels of actuation
noise. Actuation noise is applied at every time step to the sinewave that the
agents generate to control the cables. At every time step, noise is directly added
to the value of the Equation 1. To test different levels of noise, we use different en-
vironments where the standard deviation is set to 1%, 2%, 5%, 10%, 25%, 50%, 100%
of the amplitude of the sine wave for each cable.

In this experiment, we test two different policies: 1) A policy derived from
a multiagent system that had learned in an environment without noise, and
2) A policy derived from a multiagent system that had learned in the noisy
environment. For each level of noise, agents that are tested are trained in an en-
vironment with that specific amount of noise. Figure 6 shows that the tensegrity
that is trained without noise still has tolerable performance, but its performance
is significantly lower than what is is in a non-noisy environment. When we train
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Fig. 6: Performances of Robot under Actuation Noise. Robots are tested in
environments having gaussian noise added to the control amplitude with standard
deviations of 1, 2, 5, 10, 25, 50 and 100 % of the maximum control range. The
agents that are trained in a noisy environment are able perform smooth rolling
motion even in the presence of high actuation noise.

the agents with noise, it can be seen that they can perform 50% better in low-
noise environments (1% − 10%) and 100% better in high-noise environments
(50% − 100%) than the agents that are trained without noise. This is an im-
pressive result, as it shows that the solutions generated are not highly specific
to an exact model of a tensegrity and exact environmental conditions. Instead
the solutions appear highly generalizable.

5.4 Broken Cable

The fourth experiment tests the robustness of the structure and the controller.
We take the same tensegrity structure, but remove one of the cables. The re-
moval of one cable not only decreases our ability to control the tensegrity, but
also disrupts the balance of the structure. With the cable removed, the struc-
ture is not symmetrical anymore and it can not keep its ball shape by default.
To be able to compensate for the broken cable, we trained a controller with a
high range of actuation (40%) as well as a controller with a medium range of
actuation (10%). Although these two controllers score the same when used on
an unbroken tensegrity, the results change when they control the tensegrity with
a broken cable (Figure 8). While the controller with a medium activation range
can no longer perform well, the controller with a high range of activation is able
to still perform decently with a broken cable. This result shows that while having
a larger range of available motion may not be valuable under nominal conditions,
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Fig. 7: Multiagent Learning with a Tensegrity Robot with Broken Ca-
ble. The robot with 40% activation range can still move the robot despite the
missing cable.

under adverse conditions, we can learn a controller that takes advantage of the
larger range of motion to effectively move the tensegrity robot. Note that this
result does not show that the learned control policy dynamically adapts to prob-
lems, since in this experiment we retrain our policy after the breakage. However,
it does show the flexibility of the learning process. In addition, in many situations
a may be possible to upload solutions derived in simulation to disabled robots in
the field. This could be especially useful when the robot is highly inaccessible.

6 Alternative Control Strategies

In our simulations we took a specific approach to control our 6 rods 24 muscles
tensegrity. We first grouped 24 muscles into 8 groups of 3 and assigned each group
to a different agent. This approach simplifies the problem, but there are different
control approaches that can be taken. Currently, we are working on two different
approaches to control the same tensegrity. First one is assigning different agents
for each cable. With this approach, the problem becomes harder to learn with
24 agents learning to cooperate to find a solution. On the other hand, search
space is much bigger allowing different policies that cannot be created using 8
control groups. To be able to use such an approach, we are working on different
multiagent learning and coevolutionary algorithms methods.

On the other hand, a completely different controls approach is using payload
muscles as illustrated in Figure 10. In addition to the base structure, we add a
payload to the center of the tensegrity and connect the payload to the end of
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Broken'Cable'

Fig. 8: Tensegrity Robot with Broken Cable

the rods with 12 cables. At this point, we still have the base tensegrity and its
nice properties, and we have the payload in the middle protected from external
impacts by the rods and elasticity of the cables. Considering this structure with
36 muscles (24 shell and 12 payload muscles) it allows a completely different
controls approach. While keeping 24 shell muscles uncontrolled but stiff, one can
control the tensegrity using 12 payload muscles. One advantage of this approach
is relevant to the hardware design. Instead of placing actuators to the rods,
they can be placed at one central location. Our early experimentation with this
approach shows that multiagent learning can provide smooth rolling behavior by
controlling payload muscles. Comparing two approaches visually, we were able
to determine that the way the tensegrity deforms itself is much different, but
both methods provide rolling motion.

7 Hardware Robot

With the actuation requirements explored in simulation, and building on our
experience with prior prototype tensegrity robots, we will be spending this year
researching appropriate actuation technologies and building a prototype of the
rolling tensegrity robot discussed in this paper. Our existing prototype tenseg-
rity robot uses position controlled spooled-cable actuation, and we will explore



XV

Fig. 9: Experimental Tensegrity Robot Prototype. This 6-rod tensegrity
robot is designed to test hardware implementation and shape-changing abilities
of tensegrities. We are in the process of building 6-rod tensegrity that can roll.

two new approaches: Impedance Controlled (Tension and Position) Spooled Ca-
ble actuation, and Twisted Cable Actuation. Our existing prototype robot is
already designed for spooled cable actuation and we will retrofit it with new
sensors and controls to support Impedance Control. In parallel we will evaluate
a novel “twisted cable” actuation approach that we believe will allow for the
use of significantly smaller and energy efficient motors due to the decoupling of
motor torque output from actuator tension output. Finally these two actuator
approaches will be evaluated for design simplicity, power efficiency, and total
system mass, and the best approach will be used on our new rolling tensegrity
robot. This new robot is designed to validate the controls approaches explored
here and to show that these tensegrity robots can be used as landing and mobility
systems.
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Fig. 10: Payload based actuation concentrates the actuators at the center and
controls payload muscles instead of structure muscles.

8 Conclusions and Future Work

Tensegrity robotics matched with multiagent learning systems have a promising
future. The structural properties of tensegrities give them many beneficial prop-
erties, while their distributed nature makes them a perfect match for multiagent
systems. In this paper, we introduce a first step to this promise. We first show
that in simulation a direct policy search algorithm is able to learn an effective
controller that allows a moderately complex tensegrity ball to roll. Then we show
how performance can be improved by applying a multiagent learning system to
this same tensegrity robot. Not only is the multiagent system able to produce a
smooth rolling motion for the tensegrity robot, it is able to do so under a wide
range of adverse conditions, including actuation limitations, actuation noise and
cable breakage. These results show that multiagent learning systems are a strong
candidate for tensegrity control. In addition, the high level of robustness may al-
low our multiagent framework now used in simulation to be used on our physical
tensegrities now in development.

The multiagent learning system used in this paper represents just a glimpse
of what may be possible for tensegrity control. While the distributed nature of
a tensegrity makes it a natural match to the distributed nature of a multiagent
system, the multiagent system we use in this paper is actually not as distributed
as it could be. While all the agents take independent actions, they all try to
maximize the same global system reward. Their use of this global reward can
cause agents to take into account too much information and limit their ability
to learn quickly. In contrast, future research may show that it is possible to use
agent-specific rewards that are more relevant to an agent’s particular action.
In addition, it may be possible to partition agents into more distributed sets.
Such changes could allow multiagent systems to be used for even more complex
tensegrities and achieve more sophisticated control behaviors.
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Cable and Spool 

Twisted Cable 

Fig. 11: Actuation can be performed by pulling in a cable with a spool. Alterna-
tively a bundle of cables can be twisted and the action of twisting and untwisting
the cable will change the length of the bundle.
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