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Abstract— From the viewpoint of evolution, vertebrates first
accomplished locomotion via motion of the spine. Legs evolved
later, to enhance mobility, but the spine remains central. Con-
trary to this, most robots have rigid torsos and rely primarily
on movement of the legs for mobility. The force distributing
properties of tensegrity structures presents a potential means
of developing compliant spines for legged robots, with the
goal of driving motion from the robots core. We present an
initial exploration of the morphological design of a tensegrity
quadruped robot, the first to the authors’ knowledge, which we
call MountainGoat, and its impact on controllable locomotion.
All parts of the robot, including legs and spine, are compliant.
Locomotion is aided by the use of central pattern generators,
feedback control via a neural network, and machine learning
techniques involving the Monte Carlo method as well as genetic
evolution for parameter optimization. Control is demonstrated
with three variations of MountainGoat, focusing on actuation
of the spine as central to the locomotion process.

I. INTRODUCTION

Current wheeled and rigid-bodied robots are limited in
their mobility over rough terrains and in their ability to
operate in unpredictable environments. This limits their use-
fulness for such tasks as space exploration, search and rescue
missions, and missions in environments unsafe for humans.
These environments are well suited for compliant quadruped
robots.

Tensegrity structures, which originated in architecture as a
disjoint set of compression members suspended in a system
of continuous tension members, represents a more recently
investigated solution to extending compliance to an entire
robotic structure [1]. Tensegrity robots are lightweight and
robust to failures, as the failure of one actuator leads to
diminished performance rather than failure of performance.
They are impact tolerant, as forces distribute evenly over the
whole instead of being magnified into joints by internal lever
arms, causing less damage to itself and to other objects in
its environment.

Figure 1 shows a model of MountainGoat, a tensegrity
quadruped robot based off an original model by Tom Fle-
mons [2], balanced on a terrain filled with blocks. Of note
in this figure is MountainGoat’s passive terrain interaction,
and how it naturally adapts to complex footing by utilizing
the multiple degree-of-freedom compliance of its tensegrity
spine. This ability of tensegrities to redistribute forces to
achieve equilibrium is a compelling reason for their applica-
tion to constructing robots that can traverse rugged ground.
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The goal of our research is to develop a quadruped robot
with the agility and adaptability of a mountain goat.

Fig. 1. The Quadruped balancing on blocks, naturally adapting to complex
footing by utilizing the multi-DOF compliance of its tensegrity spine.

Prior studies with other tensegrity morphologies has shown
robust locomotion over rough terrain [3], [4], [5], [6], [7],
[8], [9], [10], [11]. The quadruped morphologies we present,
however, have not yet been developed to the point where
they can locomote over rugged ground. With the preliminary
results presented here, we are beginning to understand the
process of whole-body control, and how the spine provides
support to shoulders and hips in order to lift legs. For
instance, we have not quite achieved the amount of leg lift
necessary to actively traverse rugged terrain. In addition, the
control presented here is limited to spinal motions. Hence
our quadruped has passive legs and still lacks knees, which
enhance motion over obstacles. Nevertheless, our initial
findings have given important insights toward our ultimate
goal.

II. BACKGROUND

Boston Dynamics' BigDog and Spot robots have had
success in navigating robust terrain including on ice and
snow [12] [13]. These robots can be energy expensive,
prone to single-point failures, and susceptible to damage on
impact, to the robot itself as well as to objects and people
in its environment. Degrave, et. al. have incorporated some
compliance in the legs of quadruped robots [14]. These rigid
bodied robots, however, represent more constrained solutions
that lack the compliant spines that are central to the speed,
agility, and stability of quadruped and biped locomotion [15].

The benefit of a compliant spine to quadruped locomotion
has been studied by Zhao, et. al., simulating robots that have
multiple spinal joints ranging in number from 1 to 12 [16].
Although improved locomotion was shown with two and four
spinal joints, these simulated designs use one-DOF joints that



represent single points of failure, and the legs of the robots in
these simulations were completely rigid. Researchers at the
University of Pennsylvania compared two robots with the
same semi-rigid c-shaped legs, one with a rigid body and
the other with a parallel elastic actuated spine. The robot
with the elastic spine showed more distance and agility in
forward leaps than its rigid bodied counterpart [17].

One of the earliest investigations of tensegrity locomotion
involved gait production in a simple three-bar tensegrity
structure by researchers at Cornell University [18]. Some
robots, such as MITs Cheetah robot, have incorporated
tensegrity principles in the legs, but not in the spine of the
robot, where it could have greater benefit [19]. Although
the legs of the Cheetah robot are very effective in forward
motion, they are somewhat limited in the kind of lateral
motion needed to give good balance and stability.

Researchers at the University of California, San Diego
have studied the locomotion of a snake-like tensegrity struc-
ture for duct inspection [3], and Agogino, et. al. have studied
locomotion of the SUPERBall bot, with the goal of exploring
Saturn's moon Titan [4], [5]. Tensegrity structures can be
used to model spines [20], and extensive research has been
done by Mirletz, et. al. on flexible tensegrity spines for their
potential benefit in locomotion, with the eventual goal of
building compliant quadruped and biped robots [6], [7], [8],
[9], [10], [11]. The study of tensegrity spines in these papers
has demonstrated the robustness of tensegrity locomotion
over rough terrain.

III. METHODS

Our structural design approach began with a fully passive
model of MountainGoat, designed by Tom Flemons [2]. Due
to the tendency of tensegrity structures to redistribute loads
and deform to equilibrium shapes, designing for movement
can be very counter intuitive, and structural design and con-
trol end up being highly coupled. Because of this property,
many of our design iterations came about as a result of
attempts to control previous model designs.

Inspired by evolution, and the central role spines play in
vertebrate locomotion, we initially focused on driving motion
from the spine. This approach allowed us to continue the
research of Brian Mirletz [6], [7], [8], [9], [10], [11], by ap-
plying his tensegrity spine control research to MountainGoat.
Thus, we use machine learning to optimize the controls for
novel morphologies, allowing us to evaluate the effectiveness
of a specific morphology.

The open source NASA Tensegrity Robotics Toolkit
(NTRT) was used for simulation. NTRT is built on the
Bullet Physics Engine, version 2.82, which handles rigid
body dynamics to simulate the rods of the structure. This
is supplemented by an additional custom soft body spring-
cable model with contact dynamics, which is used to simulate
the muscles of the structure. The dynamics of the spring-
cable are based on Hooke’s law for a linear spring, and
collisions are detected using ghost objects within Bullet
[9]. Internal cable and rigid body dynamics were previously
validated within 1.3% error [21]. Additional tests validated

steady state error on maximum cable tension within 6.1%,
maximum system tension on hand-tuned controllers was
validated within 7.9% error, and tensions from CPGs were
validated within 1.6% error [9].

Simulations were run at 1000 Hz. Five different iterations
of MountainGoat are presented. The stiffness, pretension, and
damping parameters used for these models can be found in
table I. For reference, a pretension setting of 700 is about 5N,
1000 is about 7N, 2500 is about 17.9N, and 3500 is about
25N. The last three of these model revisions were tested
in simulation on flat terrain, using the actuation approach
discussed below.

TABLE I
PARAMETERS USED FOR EACH MODEL

Model Parts pretension stiffness damping
Model 1:
Flemons

All parts 700 2000 20

Model 2:
NewFeet

All parts 700 2000 20

Model 3:
LongTorso

Spine
Legs
Feet

0
2500
1000

1000
3000
1000

10
30
10

Model 4:
Spirals

Spine
Legs
Feet

0
3500
1000

1000
4000
4000

10
10
10

Model 5:
NoFeet

Spine
Legs

1000
3500

2000
4000

10
10

A learning run starts with a Monte Carlo stage, where
30,000 random trials are generated. Each trial has a duration
of 60 seconds and, since we use the distance traveled in one
minute as the measure of fitness, this distance is determined
by taking the difference between the location of the center
of mass at the beginning and end of each trial. Those trials
in which MountainGoat travels the greatest distance in any
direction are considered the fittest trials. After the Monte
Carlo stage ends, we evolve the fittest 40 trials via a genetic
algorithm with crossover, mutation, and elitism. Given a
complex parameter space with many peaks and valleys, we
use Monte Carlo trials to find initial decent results, and
then optimize them with the genetic algorithm. The mutation
chance used was 50% while the mutation deviation was 3%.

Our approach to actuation reflects the hierarchical nature
of biological nervous systems, with local reflexes at a lower
level and Central Pattern Generators (CPGs) at a higher level
[22]. Impedance control is used for the lower level reflexes,
based on an equation first used for tensegrity by Orki, et. al.
[23] and adapted to account for descending commands from
the CPGs by Mirletz, et. al. [10]:

T = T0 +K(L− L0) +B(V − V0) (1)

T is the output tension, T0 is the tension offset, and K is
the position gain on the difference between the current length
L and the desired length L0. B is the velocity gain on the
difference between the current velocity V and the desired
trajectory V0. This V0 term is a descending command from
the CPG.



The CPG equations used consist of adaptive phase coupled
oscillator equations with frequency feedback [24], as well as
amplitude and phase feedback [25], and were previously used
by Mirletz, et. al. for locomotion of tensegrity spines [6]:

ṙi = γ(Ri + krFr − r2i )ri (2.1)

θ̇i = ωi + kθFθ +
∑
j

rjwijsin(θj − θi − φij) (2.2)

ω̇i = kωFω sin(θi) (2.3)

V̇i = ri cos(θi) (2.4)

where ri is the wave’s amplitude, ωi is its frequency, and
θi is its phase. Vi is the input to the impedance controller. The
amplitude, as seen in equation 2.1, is set by the convergence
parameter γ and the setpoint Ri. The phase, as seen in
equation 2.2, is connected to neighboring nodes through the
coupling weight wij , phase offset φij , and the neighboring
node’s amplitude rj . The constant terms kr, kθ, and kω are
scalar gains on the corresponding feedback parameters Fr,
Fθ, and Fω . These feedback parameters come from outputs
of an artificial neural network, and are used in a similar
manner as in [25] and [6]. As in [6], this neural network
consists of two input nodes for which the inputs are tension
and length, one hidden layer of four nodes, and three output
nodes for Fr, Fθ, and Fω .

The CPG equations are integrated using ODEInt, which is
part of the Boost C++ libraries [26]. Each actuator is coupled
only to other actuators that share rigid bodies [6], [10]. Since
our approach to control has up to this point focused on spine
actuation, the linearity of the rigid bodies attached to these
actuators ensures that there are at most three rigid bodies in
each coupling set.

IV. RESULTS AND DISCUSSION

A. Mechanical Design

Fig. 2. Model 1 of the quadruped, Flemons, based off a design by Tom
Flemons.

The initial design, Flemons, seen in figure 2, consists of a
spine of six X-segments of four struts each, with three of the
segments oriented vertically and three oriented horizontally.
ten cables connect each segment in the spine, with the
exception of the penultimate segment which is connected by
fourteen cables. The hips and shoulders also consist of single
T-segments, of three struts each. Each of the shoulders are
connected to the spine by ten cables, and each of the hips are

attached to the spine by nine cables. the hips connect to each
other with one cable, to add stability. Legs also consisted of
single X-segments, but with shorter support rods added to
the bottom of each leg for stability. Each leg is connected to
its corresponding hip or shoulder, foot, and spine by fourteen
cables. The feet consist of two rods which cross each other,
and 11 cables connecting these rods to the legs, for support.
The full model has a total of 60 struts. In qualitative testing
on hilly terrain, we found that the cross rods of the foot
caught too easily on obstacles, and didn’t provide enough
stability to keep the structure standing.

Figure 3 shows NewFeet, which differs only in the feet.
The bottom rod of the leg is extended by 5 cm, and a
compliant foot, consisting of a four strut prism, replaces the
two cross rods, and brings the model to a total of 68 struts.
An extra muscle was also added to each hind leg, shown in
red in figure 3, connecting these legs to the last vertebra in
the spine to improve overall balance. This compliant foot
provided more stability to the structure. In drop tests on
hilly and block-filled terrains, these feet helped the model to
maintain a standing position on landing, rarely falling over.
Flemons and NewFeet were not actuated, but were primarily
evaluated passively and qualitatively for structural stability.

Fig. 3. The first revision of MountainGoat, NewFeet with improved
compliant feet for better balance. Differences are shown in red.

Fig. 4. The second revision of MountainGoat, LongTorso, with an extra
vertebra added to the spine.

For ease of actuation, the structure was updated again
by adding an extra vertebra to the spine, bringing the total
number of struts to 52. This was done to simplify the initial
approach to control, as each vertebra of the spine would
have an equal number of CPGs. Then input parameters for
only 8 CPGs on one vertebra would need to be learned, and
then applied to the 7 identical spine segments, reducing the
overall solution space. In comparison, Flemons and NewFeet
would need to learn parameters for an additional 12 cables,
to accommodate the penultimate vertebra. The change had



the extra benefit of adding a bit more torsion to the spine
as well as to provide enough distance between the front and
back feet to keep them from colliding with each other. Figure
4 shows this new model of MountainGoat, called LongTorso.
LongTorso has a total of 56 CPGs, in the spine only, which
actuate the simulated model. Results of spine actuation on
this model can be seen in section IV-B.

Fig. 5. A close-up of the spine on Spirals, showing the extra muscles
added to the spine highlighted in red. Though these muscles appear almost
as duplicates of the previously existing muscles, they only share one
endpoint in common with each corresponding muscle from the original
spine morphology.

As stated earlier, morphological design and actuation of
a tensegrity robot are highly coupled, due to the tendency
of these structures to redistribute loads and deform to equi-
librium shapes. As an example, early attempts at manually
designing a controller to lift a single leg resulted in the
corresponding shoulder drooping toward the foot, rather than
the leg lifting off the ground. Since the initial cable layout of
the spine did not provide the stability to hold the shoulder
up, two extra spirals of muscles were added to the spine,
one clockwise and one counterclockwise. These extra twenty
muscles, which serve a similar function as the latissimus
dorsi muscles in many four-legged vertebrates, can be seen
on Spirals in figure 5. The addition of these muscles helped
increase torsion in the spine, which led to increased distance
traveled in simulation, as is shown in section IV-B.

Fig. 6. Current model of MountainGoat, NoFeet with feet removed.

Simulations of control of the structures in figure 4 led to
the conclusion that ground reaction force was being lost in
the compliance of the feet. As shown on NoFeet in figure 6,
the feet were thus removed, and two extra muscles were
added between each leg and its adjacent body segment,
to keep the model standing. This removal, which reduced
the total amount of struts to 56, added more distance to
simulations, as shown in section IV-B. LongTorso, Spirals,
and NoFeet are 86 cm long by 42 cm wide by 36 cm tall.
Flemons and NewFeet have a similar scale.

To determine whether NoFeet from figure 6 represents a
stable structure outside of simulation, we constructed a static

Fig. 7. Static prototype of NoFeet.

prototype. Figure 7 shows this prototype, which consists of
wooden dowels, plastic golf balls, and elastic strings held
in place with brass hooks. Passive equilibrium due to force
distribution is key in tensegrities, and this static prototype
shows that NoFeet stands in a stable position the same way
it does in simulation.

B. Control

Due to the counter intuitive nature of how these struc-
tures move, we found that hand-designing controllers was
ineffective, so we turned to machine learning techniques,
as originally developed by Mirletz for learning the control
for tensegrity spines. Machine learning using CPGs and a
neural network for feedback, as discussed in section III,
was used to actuate LongTorso, Spirals, and NoFeet from
figures 4, 5, and 6 in simulation. Figure 8 shows the results
for LongTorso from figure 4. As can be seen, only five of
the 30,000 controllers achieved a distance greater than 30
cm/min, and only one of these controllers yielded a distance
greater than 50 cm/min. Table II shows that genetic evolution
more than doubled this distance, to 110.857 cm/min.

Fig. 8. Distance traveled by LongTorso over 30000 Monte Carlo trials.

Figure 9 shows the results of 30,000 Monte Carlo trials
for Spirals, from figure 5. Although the extra spirals of mus-
cles added to Spirals did not improve the farthest distance
traveled over 30,000 Monte Carlo trials, the total number
of Monte Carlo trials that traveled farther than 30 cm/min
increased from 5 to 18, and the number of trials that achieved
close to 50 cm/min increased from 1 to 4. Table II shows
that evolution yielded a more than 100% improvement with
a distance of 130.417 cm/min. This shows that this change in
morphology, with the aim of increasing torsion in the spine,
improved distance outcomes in CPG control.



NoFeet, from figure 6, showed the best results over both
Monte Carlo and evolution. The farthest distance yielded,
which was 115.891 cm/min was more than double the
farthest distance of LongTorso and Spirals. As can be seen
in figure 10, seven of the trials traveled a distance greater
than 100 cm/min, and many more traveled distances greater
than 50 cm/min than for LongTorso and for Spirals from
figures 4 and 5. Table II shows that genetic evolution yielded
a distance of 228.564 cm/min. These gains from removing
the feet show that distance was indeed lost from having feet
with too much compliance. The resulting increase in ground
reaction force from removing the feet led to increased speed.

Fig. 9. Distance traveled by Spirals over 30000 Monte Carlo trials.

Fig. 10. Distance traveled by NoFeet over 30000 Monte Carlo trials.

TABLE II
FARTHEST DISTANCE PER MINUTE FOR EACH MODEL

Model Monte Carlo Evolution
LongTorso 53.691 cm/min 110.857 cm/min

Spirals 51.429 cm/min 130.417 cm/min
NoFeet 115.891 cm/min 228.564 cm/min

Figure 11 shows the increase in distance over subsequent
generations of evolution. This particular plot comes from
the evolution of the best 40 trials from LongTorso, shown
in figure 4, and for which the Monte Carlo results are
shown in figure 8. Note that the total distance increases
more quickly over the first 20 generations than it does over
the last 40 generations. This shows an example of how the
machine learning and control scheme described in section

III converges to a near-optimal locomotion gait for a given
morphology.

Figure 12 shows the trajectory of the center of mass of
NoFeet, from figure 6, over one minute. This shows that the
simulated robot takes a slightly curved path during travel.
While the robot does not yet move quickly, we are still in
the early stages of developing the theories of morphological
design. The current model of MountainGoat does not yet
even have knees, for instance, which would enhance the
robot’s ability to move over rugged terrain.

Fig. 11. The distance traveled over 60 generations using control policies
dictated by the 40 most successful Monte Carlo trials for LongTorso.

Fig. 12. Trajectory of NoFeet’s center of mass over a one-minute
simulation.

The machine learning results shown in figures 8, 9, and 10
and in table II yield interesting results about the complexities
of morphological design of tensegrity structures for locomo-
tion. The passive compliance of the tensegrity quadruped
is very valuable, as it allows for nature force distribution
and passive terrain adaptation. Yet passive compliance in
some cases hinders the effectiveness of locomotion, as can
be noted from the differences in the Monte Carlo results
for Spirals and NoFeet, in figures 9, and 10, as well as
the farthest distances traveled in table II. More productive
motion was gained from reducing compliance in this part of
MountainGoat.

The advantage of tensegrity robots is that pretension and
stiffness can have different settings in various body parts to
enable more productive motion, as shown in table I, where
the legs of LongTorso, Spirals, and NoFeet have greater
stiffness and pretension settings than the spine does. The



ability for components of the robot to be either compliant or
stiff is a unique characteristic of tensegrity robots. But, the
morphology of the structure must be designed correctly to be
able to provide those points of stiffness, such as lifting the
shoulder via the spiral spine muscles added to Spirals, from
figure 5, which increased the distance traveled after Monte
Carlo and genetic evolution. How to design for both passive
compliance and active stiffness is an open research topic, for
which there is currently no guiding theory.

V. CONCLUSIONS AND FUTURE WORK

Our research explored the coupled aspects of morpholog-
ical design of a spine-driven tensegrity quadruped, Moun-
tainGoat, and evaluation of the resulting CPG controlled
locomotion in simulation. Each improvement to structural
design increased the distance traveled by the robot. These
preliminary results show that we are starting to gain an
understanding of the process of whole-body control, where
the spine is central to locomotion and how extra support of
the shoulders from the spine are necessary in order to lift
the legs.

Future work will involve more formal analysis of de-
sign metrics and trade-offs, using evolution to optimize
MountainGoat’s structure in addition to its controller. This
will aid in fine tuning aspects of the model such as the
optimal number of vertebrae, distance between legs, shape of
legs and vertebrae, stiffness and pretension of muscles, and
arrangement of muscles. More torsion as and bending the the
saggital plane will be added to the spine, to increase torsion
to lift legs. Knees and an achilles tendon will be added to
the legs, as well as controller optimization to drive motion
of the legs, to help with locomotion over rough terrain.
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