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Abstract— The increasing complexity of soft and hybrid-
soft robots highlights the need for more efficient methods of
minimizing machine learning solution spaces, and creative ways
to ease the process of rapid prototyping. In this paper, we
present an initial exploration of this process, using hand-chosen
morphologies. Four different choices of muscle groups will
be actuated on a tensegrity quadruped called MountainGoat:
three for a primarily spine-driven morphology, and one for
a primarily leg-driven morphology, and the locomotion speed
will be compared. Each iteration of design seeks to reduce the
total number of active muscles, and consequently reduce the
dimensionality of the problem for machine learning, while still
producing effective locomotion. The reduction in active muscles
seeks to simplify future rapid prototyping of the robot.

I. INTRODUCTION

As tensegrity structures and their control mechanisms
become more complex, it is important to find strategies
for keeping the dimensionality of the solution space small
for more efficient performance and more successful ma-
chine learning outcomes. Iscen, et. al. have explored the
use of coevolutionary algorithms to control underactuated
tensegrities [1], to reduce solution space. Previous research
into redundancy of actuators on the SUPERball tensegrity
robot, by Lessard, et. al. has also shown that reduction in
active muscles gracefully degrades productive locomotion,
rather than curtailing it [2]. This study showed that the
reduction of the dimensionality of the solution space for
a tensegrity robot, which can help increase the chances of
finding desirable solutions, will not necessarily harm the
robot's performance and can ease the process of learning
desirable locomotion solutions.

Due to the increasing complexity of tensegrity robots,
rapid prototyping can be more challenging than for rigid-
bodied robots. One major obstacle is the large amount of
actuators that may be needed in order for a tensegrity
quadruped to move effectively, even over flat terrain. Some
promising potential solutions exist in the form of pneumatic
actuators, as investigated by Polygerinos, et. al. [3] and
Niiyama, et. al. [4], Shape Memory Alloys (SMAs) as imple-
mented by Umedachi, et. al. [5], and dielectric elastomers,
as explored by Pelrine, et. al. [6], Petralia et. al. [7], and
Bilodeau, et. al. [8]. Many of these solutions, however, have
drawbacks, such as heat dissipation and reliability for SMAs
or the need for large volumes of air for pneumatics. Others,
such as soft actuators, are still in early developmental stages.
Initial rapid prototyping could potentially benefit from being
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Fig. 1: Two different approaches to actuating Mountain-
Goat. Top: This version of MountainGoat will be used for
spine actuation only, implementing three different actuator
configuations that use 52, 24, and 16 muscles. Bottom:
This version of MountainGoat, called Achilles, will use leg
actuation only. The muscles to be actuated are highlighted in
red on only two of the legs in the figure, but will be actuated
on all four legs.

able to use readily available, off-the-shelf parts, with reliance
on more sophisticated actuators left to later prototypes. For
more complex robotic morphologies, this means finding the
most efficient approach to minimize the use of commercially
available actuators.

For our exploration of solution space reduction, we will
use two different quadruped morphologies. In our previous
publication, we have discussed the centrality of the spine
to locomotion [9], using the morphology seen in the top of
Fig. 1. Besides the spine's central role in locomotion, a well-
formed Achilles tendon also plays an important supporting
role. Various research groups have found that, though the
gastrocnemius muscle does little mechanical work, elastic
energy storage and return from the Achilles tendon plays
a major role in power production at the ankle of bipeds
and quadrupeds [10], and that the absence of a well de-
veloped Achilles tendon would prevent bipeds from running
effectively both at high speeds and over long distances [11].
This suggests the importance of having an Achilles tendon
to help produce the necessary ground reaction force for



quadruped locomotion. Researchers at MIT have explored
the advantages of an Achilles tendon in the Cheetah robot
[12]. In the process of reducing our robot’s solution space,
we will also present preliminary findings of an an Achilles
tendon, for which we will simulate the morphology shown in
the bottom of Fig. 1. We will focus on a total of four different
hand-chosen actuation solutions for the two morphologies
mentioned above, one for the leg-driven morphology, and
three for the spine-driven morphology.

II. BACKGROUND
Class-1 tensegrity structures consist of disjoint compres-

sion members interconnected by a system of tension mem-
bers, with no two compression members in direct contact.
Other class-k structures, with k equaling the number of
compressive members that come into contact at a movable
joint, also exist [13]. These structures were introduced in
architecture by Kenneth Snelson [14], but more recently
have been incorporated into robotics. As tensegrity structures
typically have multiple tension members, which can be
employed as actuators, they are robust to failure that can arise
from the loss of one or more actuators [2]. Forces tend to
distribute evenly across the web of tension members, which
makes tensegrity structures impact tolerant and less likely to
damage their surroundings.

The flexibility and impact tolerance of tensegrity structures
make them ideal for locomotion over rugged terrain, as
they are tolerant to perturbations, and prior studies with
other tensegrity morphologies by Xydes, et. al. [15], Iscen,
et. al. [16], and Mirletz, et. al. [17] have shown robust
locomotion over rough terrain. Various morphologies can
incorporate tensegrity. Xydes, et. al. have explored tensegrity
duct climbing robots [15], Sabelhaus, et. al. have built rigid-
legged quadrupeds with tensegrity spines [18], Mirletz, et. al.
have researched tensegrity spine locomotion [17], Lessard,
et. al. have developed tensegrity arms [19], and Agogino, et.
al. are developing tensegrity for planetary rovers [20].

Fig. 2: An illustration of the muscle spirals, which consist
of 24 active muscles, shown in red.

III. METHODS
A. Active Muscle Configurations

All our models are class-1 tensegrity structures, since
compression members only connect via tension members.
Our first active muscle configuration, NoFeet, consists of all
52 spine muscles as shown in Fig. 1.

Fig. 2 shows a configuration, SpiralsOnly, consisting of
24 active muscles shown in red. The passive cables, left
unhighlighted, were left in the morphology as passive fascia

in order to provide support to the structure. The choice
to actuate only these muscles followed naturally from our
previous work, in which these muscles gave extra torsion
and support to the shoulders of MountainGoat. The question
of interest here is whether actuating this set of spiral muscles
alone will degrade performance, as previous studies have
shown [2], while still allowing the morphology to still
successfully carry out its intended function.

The third configuration, called ReducedSpirals, can be
seen in Fig. 3, and consists of 16 active muscles in green.
It is essentially the same as the active configuration of 24
muscles from Fig. 2, but with the first and last four muscles
converted to passive fascia. Again, the question of interest is
whether the reduction in the number of active muscles will
gracefully degrade performance.

Fig. 3: An illustration of the shorter spirals, which consist
of 16 active muscles, shown in green.

The bottom of Fig. 1 shows an active muscle configuration
that depends on leg muscles, rather than spine muscles.
This configuration, called Achilles, has an opposing pair of
muscles in each leg, which act similarly to the combination
of the gastrocnemius muscle and the Achilles tendon in
many quadrupeds and bipeds. Since there are only two active
leg muscles, the total number of active muscles for this
configuration is 8. Additional rods in the feet of the model
were added to increase stability during locomotion.

B. Control
The open source NASA Tensegrity Robotics Toolkit

(NTRT), built on Bullet Physics Engine version 2.82, was
used for simulation 1. Internal cable and rigid body dynamics
were previously validated within 1.3% error [21]. Additional
tests validated steady state error on maximum cable tension
within 6.1%, maximum system tension on hand-tuned con-
trollers was validated within 7.9% error, and maximum cable
tensions in simulations utilizing Central Pattern Generators
(CPGs) were validated within 1.6% error [22].

Our approach to control continues upon our previous work
[9] and that of Brian Mirletz, et. al. [17], which mimics
the hierarchy of a biological nervous system [23]. This
system utilizes impedance control for lower level reflexes
[24], governed by the following equation:

T = T0 +K(L� L0) +B(V � V0) (1)

where T0 is the tension offset and T is the output tension.
K is the position gain on the difference between the current

1Source code for NTRT can be found at https://github.com/NASA-
Tensegrity-Robotics-Toolkit



length L and the desired length L0, and B is the velocity
gain on the difference between the current velocity V and the
desired trajectory V0, where V0 is the descending command
from the CPG.

CPGs with feedback [25] [26], processed via a simple
feedforward neural network, are used for higher level muscle
group coordination. The equations for the CPGs are:

ṙi = �(Ri + krFr � r2i )ri (2.1)

˙✓i = !i + k✓F✓ +

X

j

rjwijsin(✓j � ✓i � �ij) (2.2)

!̇i = k!F! sin(✓i) (2.3)

˙Vi = ri cos(✓i) (2.4)

The parameters ri, !i, and ✓i are the CPG wave’s am-
plitude, frequency, and phase, respectively. The convergence
parameter � and setpoint Ri are used to set the amplitude
ri. The coupling weight wij , phase offset �ij , and the the
amplitude of the neighboring node rj are used to determine
the derivative of the phase ˙✓i. The feedback inputs Fr, F✓,
and F! have corresponding constant scalar gains kr, k✓, and
k! . The resulting Vi from equation 2.4 is used as input to
the lower level impedance controller.

C. Machine Learning
Our machine learning approach is based off our previous

work [9] and that of Mirletz, et. al. [27], where learning runs
consist of Monte Carlo (MC) trials followed by a genetic
evolution stage. For all three spine muscle configurations,
30,000 random MC trials were performed. In these trials,
neural network weights, CPG coupling weights, and CPG
phase offsets are randomly generated. For the active muscle
configuration consisting of leg muscles, 90,000 MC trials
were performed, to accommodate for the extra PD and
impedance controller parameters that generated in addition
to the initial neural network weights, coupling weights, and
phase offsets. All MC trials were 60 seconds in length.

For the evolution stage, the population consists of the
best 40 results from MC, and evolution terminates after 60
generations. Each generation of evolution employs crossover,
mutation, and elitism. During each generation, 15 of the
40 population members mutate, with each parameter in one
member having a 50% chance of changing by a deviation of
0.03. Crossover is achieved by combining different groups
of parameters from different population members. Crossover
results in 10 new population members in the next generation,
which by elitism replace the worst 10 from the current
generation.

Our primary fitness function is distance, but the cost of
transport (COT) is also considered. The distance is measured
as follows: the x and z coordinates of the robot’s center of
mass (COM) are recorded at the beginning of a 60-second
simulation, and then these coordinates are recorded again
at the end of a simulation. The distance formula is then
calculated using these two points. The cost of transport [28]
is calculated as follows:

COT =

W

mgd
(3)

W denotes work put into the system, while m, g, and d are
the mass, gravity, and distance traveled, respectively. COT is
a unitless metric, and a smaller COT means the system is
more efficient. As can be seen from equation 3, gravity is
also considered in simulation, and reflects Earth’s gravity of
9.81m

s2 .
Our active leg configuration, Achilles, which employs

antagonistic pairs of long muscles, required re-tuning of the
PD and impedance controller parameters, which previously
were tuned for shorter muscles. While these parameters
can be tuned by hand, requiring time, trial, and error, our
approach to tuning these parameters uses machine learn-
ing. Mirletz, et. al. experimented previously with machine-
learned Impedance control parameters for tension, length,
and velocity [29]. In addition to this, the proportion and
derivative input parameters for PD control are learned via
evolution.

For the configuration consisting of only leg muscles, we
used a similar approach for reducing the solution space as
in [28]. That is, our solution space consists of the coupling
weights and phase offsets of one leg, and those parameters
were reused for all four legs. This approach could be
modified to produce different gaits by adding an offset pair
for each leg to the individual weight-coupling pairs. The
result would be the generation of different gaits, while still
keeping the solution space small. Currently, our preliminary
research does not yet utilize such a gait-dependent offset
pair, but future work will explore different gaits using this
technique.

Fig. 4: The initial 30,000 randomized MC trials, each one
minute in duration, for NoFeet. For the evolutionary results
of the best 40 of these trials, see table I.

IV. RESULTS AND DISCUSSION

A. Control

The results of 30,000 MC trials on NoFeet, illustrated in
the top of Fig. 1 above, can be seen in Fig. 4. This configu-
ration yielded a distance of 247.1 cm/min after MC, longer
than both SpiralsOnly and ReducedSpirals, with 24 actuators
and 16 actuators, respectively. NoFeet produced many more



trials which traveled further than the 50 cm/minute threshold
than either SpiralsOnly or ReducedSpirals did. The distance
after evolution, which was 339.4 cm/min, is listed in table I.

The MC results for SpiralsOnly, depicted in Fig. 2, can be
seen in Fig. 5. The number of trials faster than 50 cm/min
is much sparser than for NoFeet, which is consistent with
the results in Lessard, et. al. [2]. However, the best trial
traveled at a speed of 229.4 cm/min, which though slower
than the best trial for NoFeet, as seen in in figure 4, is
nonetheless close. Despite the sparsity of trials faster than
50 cm/min, SpiralsOnly improved the most during evolution.
This evolution result could be due to the fact that SpiralsOnly
had at least one more trial with a distance longer than 150
cm/minute than NoFeet had. The favorable traits from this
extra MC trial would most likely give it an advantage over
multiple generations. As seen in table I and figure 8, the
distance traveled increased to 365.8 cm/min after evolution.

Fig. 5: The initial 30,000 randomized MC trials, each one
minute in duration, for SpiralsOnly. See table I and Fig. 8
for the resulting distance after evolution from the best 40 of
these trials.

Fig. 6 shows the results of 30,000 MC trials for Re-
ducedSpirals in Fig. 3. As with SpiralsOnly, there is a
sparser number of trials faster than the 50 cm/min threshold
ReducedSpirals than there is for NoFeet. The use of 16
spine actuators resulted in a best trial of 150.2 cm/minute,
which was slower than the best trials for both SpiralsOnly
and NoFeet. The results of evolution increased the speed to
274.7 cm/min as in table I and figure 8. In our previous
work, we discussed the importance of this type of spiral
cable configuration for increasing torsion in the spine and
giving more shoulder support for lifting the legs [9]. The
resulting performance of ReducedSpirals, in comparison to
SpiralsOnly, supports this claim, inasmuch as decreasing
the length of this spiral leads to decreased torsion and
shoulder support. Also, the general reduction in the number
of actuators supports graceful degradation, rather than sharp
cessation, in performance.

Since we use machine learning to tune the PD and
impedance parameters for Achilles, we ran three times the
amount of MC trials. Fig. 7 shows the results of these
90,000 trials. The best trial for Achilles, at 458.3 cm/min,
is roughly three times as fast as NoFeet, SpiralsOnly, and
ReducedSpirals after MC, and is even faster than the evolved

results for these other three cable configurations, at 779.3
cm/min. Figure 7 shows that the majority of the trials are
concentrated below a threshold of 200 cm/min, which is
much higher than the 50 cm/min threshold of SpiralsOnly,
ReducedSpirals, and , NoFeet. Also, the results in the upper
half of this plot are not quite as sparse as they are for the
other experiments. This indicates that running more MC
trials would improve our evolutionary results. It is quite
possible that the strong ground reaction forces generated with
the help of these long, antagonistic pairs, contributes to this
increase in speed. Considering the centrality of the spine for
locomotion, as hypothesized by Gracovetsky, et. al. [30], as
well as the importance of the Achilles tendon for push off, as
extensively explored by Folkertsma, et. al. [31], it would be
interesting to see how combining both these types of active
muscles would affect locomotion speed.

Fig. 6: The initial 30,000 randomized MC trials, each one
minute in duration, for ReducedSpirals. See table I and Fig.
8 for the resulting distance after evolution from the best 40
of these trials.

Fig. 7: The initial 90,000 randomized MC trials, each one
minute in duration, for Achilles. For the results of the best
40 of these trials, see table I and Fig. 8.

Fig. 8 shows the progress of evolution for NoFeet, Spiral-
sOnly, ReducedSpirals, and Achilles. The most improvement
occurs within the first 20 generations of evolution, leaving
relatively minor improvements to the last 40 generations.
This shows that our genetic algorithm converges quickly to
the most advantageous solutions for a given morphology.
ReducedSpirals both begins and ends the evolutionary stage
as the slowest of all four actuator configurations, although



during generations three through eleven it is tied with Spi-
ralsOnly. Although SpiralsOnly and NoFeet start out close
in performance, NoFeet overtakes SpiralsOnly as early as the
tenth generation. Nevertheless, SpiralsOnly barely wins out
over NoFeet by generation 30. Achilles starts out performing
better than SpiralsOnly and ReducedSpirals, and continues
to outperform both throughout the entire evolution stage.

Fig. 8: A comparison of the progression of genetic evolution
for NoFeet (red), SpiralsOnly (blue), ReducedSpirals (green),
and Achilles (cyan).

TABLE I: Longest Distance Per Minute for Each Model

Model Monte Carlo Evolution
NoFeet 247.1 cm/min 339.4 cm/min

SpiralsOnly 229.4 cm/min 365.8 cm/min
ReducedSpirals 150.2 cm/min 274.7 cm/min

Achilles 458.3 cm/min 779.3 cm/min

Fig. 9: The trajectories of all active muscle configurations,
based on the center of mass of each robot. NoFeet is in
red, SpiralsOnly is in blue, ReducedSpirals is in green, and
Achilles is in cyan.

Fig. 9 compares the resulting trajectories of the various
active muscle configurations. The paths traveled are the
results after evolution, and the distances are listed in table
I. When plotted, some of the trajectories were rotated with
respect to the origin in order to better compare distance.
Note that all trajectories are, for the most part, straight.
The distances, however, are very different. These different
distances support the concept, which we discussed in our

previous work [9], that morphological design and control are
highly coupled. A relatively minor reduction in the number
of active cables from 24 to 16, for instance, caused a notable
decrease in the speed of locomotion. A change in mode
of actuation, from spine-driven to leg-driven locomotion,
resulted in a notable increase in the speed of locomotion.

TABLE II: Cost of Transport for Each Model

Model Monte Carlo Evolution
NoFeet 3.18 1.68

SpiralsOnly 2.05 1.23
ReducedSpirals 1.80 1.09

Achilles 1.19 0.65

Table II shows the COT for each configuration, both for
the best MC distance and for the best distance after evolution.
Note that COT decreases as the number of active muscles
decreases. This makes sense as reducing the number of
actuators will also reduce the amount of energy necessary
for locomotion. Also note that COT for each configuration
is almost halved after evolution. This shows that our evolu-
tionary algorithm not only increases the distance traveled, but
also increases the efficiency in traveling this longer distance.

B. Solution Space

TABLE III: Number of parameter pairs learned for each
model

Model Active
Muscles

Max per
Segment

coupling
pairs

NoFeet 52 16 392
SpiralsOnly 24 8 100
ReducedSpirals 16 8 100
Achilles 8 2 7

Mirletz et. al., in their earlier analysis of solution space
dimensionality of CPG networks, arrived at the following
formula for the number of possible coupling weight and
phase offset pairs that a morphology with repeating segments
and bi-directional CPG couplings would be required to learn
for productive motion [28]:

CPG couplings =
m(3m+ 1)

2

(3)

with m representing the number of active muscles, and
hence number of active CPG nodes, per segment. NoFeet,
shown in Fig. 1, has 16 nodes per segment, while SpiralsOnly
and ReducedSpirals each have 8 nodes per segment. Achilles
has only 2 nodes per leg. As seen in table III, this equates to a
larger solution space for NoFeet, which requires learning 392
coupling pairs. The other spine configurations, SpiralsOnly
and ReducedSpirals, have smaller solution spaces, with 100
coupling pairs. In contrast, Achilles has only 7 coupling pairs
to be learned. Despite the fact that Achilles has extra PD
and impedance controllers parameters to learn, these only
account for 5 more variables, and thus this configuration has
the smallest solution space of all four configurations.



V. CONCLUSIONS AND FUTURE WORK

We explored several active muscle configurations for
MountainGoat, with each configuration reducing the solution
space and improving speed and COT over the original.
SpiralsOnly resulted in a longer distance than NoFeet, while
ReducedSpirals was slower. Both SpiralsOnly and Reduced-
Spirals had lower COT than NoFeet, however. Achilles
showed the most improvement in speed and COT of all the
configurations. Future work will include verification of these
results with construction of actuated prototypes, to test the
practicality of the various designs.

As the long term goal for MountainGoat is robust terrain
traversal, future work will also include integrating spine and
leg muscle activation presented here, both in simulation and
in prototype, with the goal of giving more support for lifting
legs over obstacles. Different gaits will also be explored,
using gait-dependent offset pairs for individual legs.
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