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Abstract

To further the ability of robots to achieve goals in environments with irregular terrain, we have developed a
series of tensegrity spines as an abstraction of the many degrees of freedom (DOF) compliant spines seen in
nature, with full six DOF between vertebrae (constrained by a tensile network). This work provides insight into
control strategies for such many DOF and compliant systems, which lack the rigidly connected segments
needed by traditional control. Our Central Pattern Generator (CPG)-based controller receives both proprio-
ceptive feedback and goal-directed input. We utilize artificial neural networks to process both the feedback and
the input, and only use feedback available to our analogous robotic hardware. This approach seeks to maximize
the low-level competence of the control system, by combining local reflexes with structural compliance. This is,
to our knowledge, the first example of a robot controlled by CPGs that is simultaneously capable of goal-
directed behavior and locomotion on irregular terrain. In addition, this is the first goal-directed controller for a
tensegrity robot that can transition between different terrains.

Introduction

To achieve goals in applications such as search and
rescue, exploration, medicine, and interaction with hu-

mans, robots need to adapt to their surroundings, utilizing
compliant yet rugged bodies to execute those adaptations.
Soft robots could provide this adaptability and revolutionize
the role of robots in these areas.1 However, one of the major
challenges for soft robotic systems is the lack of control
paradigms compatible with the many degrees of freedom
(DOF) and whole body compliance of soft systems.2 This
control challenge is shared by tensegrity robots, which sus-
pend rigid elements within a compliant tension network,3 and
tensegrity robots are often viewed as a soft–rigid hybrid.2

Studying animals highlights how a flexible, actuated spine
could improve a robot’s performance. In evolutionarily lower
tetrapods such as lizards and crocodiles, the lateral bending
(coronal plane) of the skeleton produces the advancement of
the limbs for locomotion.4 Mammals also have the ability to
bend vertically (sagittal plane), which enables higher speed
gaits such as galloping.5 Galloping utilizes the elasticity of

the spine to transfer energy between legs.6 In addition, the
dorsal muscles of a dog’s spine appear to contribute to sta-
bilization in all three planes of the body, with roles (mobility
and stability) changing somewhat between gaits.7

Tensegrity structures are often proposed as models of bio-
logical systems. For example, tensegrity can model the non-
linear mechanical properties of the cell’s cytoskeleton such as
strain hardening.8 These insights have implications for prac-
tical applications in tissue engineering, as they help determine
how cells will attach to substrates,9 and even change the ge-
netic expression of the cell (known as cell fate).10 Tensegrity
properties can be observed in macroscopic biological struc-
tures, particularly through the connective tissue such as fas-
cia.11 Turvey and Fonseca hypothesize that tensegrity-based
biomechanics would explain phenomena in haptic perception
such as loss of limb awareness in microgravity and perception
of phantom body parts.12 Passive tensegrity models of the
spine,13,14 knee,15 and shoulder girdle16 can capture geometric
features of anatomy without the simplifying assumption of a
stable platform within the body or a large reduction in the DOF
(as in more traditional models such as Ref.17). For review of
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biotensegrity models, see Ref.18 These biologically inspired
designs motivated robotic tensegrity models of the caterpillar,19

and Manta-ray’s wings20 or tail.21,22

While analytical methods exist for computing the dynamics
of tensegrity structures,23 they require detailed knowledge of
the forces experienced by the robot, which quickly becomes
intractable for dynamic locomotion in irregular terrain. Other
types of controllers for tensegrity robots, such as a spiking
neural network controlling an irregular (machine evolved)
tensegrity structure24,25 or a controller that exploits the vi-
brational modes of the structure,26,27 have been demonstrated
successfully on flat ground with minimal information about the
environment. However, irregular terrain is likely to modify the
direction of motion for these types of controllers. Similarly,
machine learning can determine patterns of cable lengths that
successfully traverse irregular terrain, but these need to be
retuned for each terrain type.28,29 Therefore, it is worth in-
vestigating controllers for soft and tensegrity robots that can
produce goal-directed motion over multiple terrains without
retuning, using sensory information that can be easily obtained
in a tensegrity system.

Animals can control the many DOF of their compliant bodies
across complex terrains, so it is natural to look for solutions in
neuroscience and biology. Motor control in animals is distrib-
uted across neural centers, ranging from higher centers in the
brain to local control circuits in the spine and body.30 The bio-
logically inspired robotics community has long known the value
of distributed control, local reflexes, and passive dynamics for
adaptive behavior.31–33 More recently, engineers have applied
the dynamics of neurons that control low-level locomotion to
robots, through models of central pattern generators (CPGs).34

Implementations range from using detailed models of individual
neurons as a node35,36 to neuron models based on firing fre-
quency,37 to abstract, oscillatory dynamical systems.38,39 The
abstracted mathematical behavior creates a stable limit cycle,40

which entrains with the controlled system,41 or provides stability
in the presence of environmental perturbations.42 Thus, CPGs
are less likely to get stuck than reflexive state machine control-
lers, since the oscillatory dynamics drive locomotion. CPG-
based controllers have formed the basis of bioinspired robotic
behaviors, including gait transitions,43 omnidirectional loco-
motion,44 and adaptations to irregular terrain.45 For tensegrity
robots, CPG controllers have produced swimming in a tail-like
tensegrity beam22 and rolling and crawling motions in a six-strut
icosahedron tensegrity robot.46,47

Our prior work developed CPG-based controllers for a
variety of tensegrity robots as an abstraction of the many
DOF-compliant spines seen in nature,48,49 including online
adaptations for traversing multiple terrains.50 In this article,
we add goal-directed input to the CPG control system through
an artificial neural network (ANN), as an online, higher DOF
generalization of manual body shape controls.48 This addi-
tion makes the controller capable of goal-directed locomo-
tion across multiple types of irregular terrain in simulation
with a single set of tuned parameters.

Materials and Methods

Spine morphology

The tensegrity spine used in this work uses a three-
dimensional tetrahedral complex for vertebrae. This spine was
originally developed as a static model by Flemons14 and is
shown in Figure 1. The vertebrae consist of four rods that meet
at a central point, as if they were drawn from the center of a
tetrahedron to its vertices. When joined in a tension network,
they make a stable yet flexible column through tetrahedral
saddle joints. While the majority of man-made tensegrity
models are from the small subset of possible structures one can
make from simple straight rods and cables, the set of Class 1
tensegrity structures includes the use of any arbitrarily shaped
rigid elements, as long as those rigid elements are not touching
and are floating in the continuous tensile network of the ca-
bles.23 Natural tensegrity structures take advantage of com-
plexly shaped rigid structures, like the diverse morphologies of
bones. An early example of engineered use of more complex
rigid elements is Snelson’s X-piece, which Skelton describes
as a Class 1 structure.23 The vertebrae of this spine model are
related in form to the X-piece.

To create a tensegrity robot, all of the cables are individ-
ually actuated, although work to reduce the number of ac-
tuators is underway.51 In hardware, actuation typically takes
the form of a cable wrapped around a spool on a rotary DC
motor.48,49 In prior work, this tetrahedral complex mor-
phology displayed the most efficient locomotion.49 On ad-
ditional tuning, this spine displayed the fastest locomotion of
the tensegrity spine morphologies examined so far. For this
work, a six-segment spine was used to reduce the computa-
tional time for contact dynamics and make the terrain features
more difficult compared to a longer spine. Each rod was as-
sumed to be 17.3 cm long, resulting in a 77.5 cm long robot.

FIG. 1. A tensegrity spine
model simulated in NASA
Tensegrity Robotics Toolkit
(NTRT) performing a crawl-
ing motion, using a tetrahedral
complex as vertebrae. Eight
strings connect each segment,
four of which form a tensegrity
saddle joint.
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NTRT

The NASA Tensegrity Robotics Toolkit (NTRT) is an
open source software package with modules for the model-
ing, simulation, and control of tensegrity robots.* NTRT uses
the Bullet Physics Engine’s (version 2.82) mixed linear
complementary problem solvers for rigid body dynamics and
rigid–rigid contacts, and a custom soft body spring-cable
model with contact dynamics that is, to our knowledge, the
only open source cable model with both realistic forces and
contact dynamics. This combination of rigid and soft inter-
action allows for the study of more complex terrain interac-
tions than would be possible with an analytical model of the
tensegrity structure. The internal dynamics of the cable
model uses a Hooke’s law spring model originally im-
plemented in Ref.47 and is shown in Figure 2. Prior work with
NTRT has quantified the simulation error of this model with
hardware trials, separately showing an average 1.3% error
on position,47 and 7.9% error on maximum force.52 Ac-
tuation is accomplished by changing the spring’s rest length,
which is subject to the speed and force constraints of a DC
motor model with a linear torque–speed curve. This motor
model makes more accurate assumptions about energy use
than prior work, such as including the applied torque when
lengthening.

The cables’ soft–rigid interaction is inspired by Servin and
Lacoursiére53 and Servin et al.54 Collision detection is
handled by ghost objects within Bullet, a soft body cable is
represented as a massless cylinder with a small radius be-
tween the two rigid bodies. As additional contacts are
accumulated, additional cylinders are added to account for
bending, subject to a maximum resolution. Contacts are then
subject to an overall cable length minimization similar to
Ref.,54 which accounts for sliding. Contacts are removed
when they violate the resolution constraint, their force would
be applied outward of the geometry (i.e., the string would
push) or when contact is lost. Figure 3 provides an illustration
of the forces computed by NTRT after Bullet has determined

contacts, while Figure 4 shows an example implementation.
Validation of the contact dynamics is future work.

Tensegrity models in NTRT are constructed using a set of
builder tools that use a tagged set of Cartesian coordinates
(nodes) and their connectivity (pairs), and generates a ten-
segrity structure according to physical properties of the rods
(radius, density, friction, restitution) and cables (stiffness,
damping, motor properties). Accurate inertia matrices can be
constructed by placing spheres at nodes as a concentrated
mass along otherwise uniform density rods. Simulations were
typically run at 1000 Hz. Simulations typically run in real
time on an Intel Core� i7 CPU, but simulation speed depends
upon terrain.

Control algorithms

As demonstrated by prior work, it is possible to generate
goal-directed locomotion with position-based controls of
cable length28 or open loop vibrational control.26 In Figure 5,
this is represented as the portion of the control system in
brown. However, even with local distributed feedback, rough
terrain alters the direction of motion or even prevents the robot
from moving.50 To adapt the controller to multiple terrains in
real time, one needs to consider how to best utilize available
sensory feedback. To achieve this, our controller incorporates
distributed impedance controllers for rapid tension-based
feedback (blue in Fig. 5), a CPG for adaptive trajectory gen-
eration (also blue), and a neural network for goal direction
(orange).

Since locomotion primarily depends on the forces exerted
on the environment, the control system for the robot is dis-
tributed at the lowest level to tension control for each indi-
vidual cable. The tension set point is generated using a scalar
form of impedance control, originally adapted to tensegrity by
Orki et al.19 and modified for dynamic locomotion by pro-
viding a trajectory to the velocity term.48 Impedance control
allows for tunable stiffness and incorporates position and ve-
locity information into a tension set point. Figure 5 includes a
block diagram of the impedance controller in relation to the
entire control system. The scalar equation for an individual
cable is as follows:

T ¼ T0þK(L� L0)þB(V �V0), (1)

where T is the tension set point, T0 is a tension offset, K is a
position gain on the difference between the cable’s current
actual length L and desired length L0. B is the analogous gain
for V and V0, where V0 is a trajectory provided by the CPG. L0

is typically the initial length of the cable, maintaining in-
formation about the robot’s initial shape. If the resulting set
point is less than zero, the controller will set T = 0. The ten-
sion set point is sent to a PD controller for low-level motor

FIG. 2. A graphical representation of our Hooke’s law-
based spring model. The top picture represents a slack cable.
In the bottom, the motor has spun clockwise, tightening the
cable and applying equal and opposite forces to the rods.

FIG. 3. Left: Two rods and a cable encounter a square
block, creating a single point of contact. Right: A graphical
representation of the force vectors in this situation. The
contact force fc is applied to the block, while cable forces
-fa and -fb are applied to the rods.

*Information, source code, and documentation for NTRT and the
controller presented here can be found at http://irg.arc.nasa.gov
/tensegrity/NTRT
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FIG. 5. One unit of the control
system, applied to a single cable.
Impedance control (top right)
uses tension, length, and velocity
to compute a tension set point.
This is the input to a PD con-
troller, which provides a desired
torque to the motor model and
affects the rest length of the ca-
ble. The components in brown
are sufficient for locomotion,
blue components provide envi-
ronmental adaptations. Interac-
tions with the environment are
captured through tension and
length of the cable, and provided
as feedback about the cable’s
current length, and tension is
provided to the central pattern
generator (CPG) through an
artificial neural network. The
sensory feedback network pa-
rameters are applied to each
cable. Another artificial neural
network is used for goal direc-
tion. The goal direction network
(orange) has four inputs, eight
hidden nodes, and eight outputs:
the tension set point of each
cable’s impedance controller.
Connections between nodes
are weighted linear functions,
which sum into a sigmoid func-
tion. Each final output node is
another sigmoid, which com-
bines the outputs of the hidden
nodes. The same network is used
for each segment, resulting in the
goal-directed feedback provid-
ing commands like ‘‘tense all of
the top cables.’’

FIG. 4. An analogous situation to Figure 3
simulated in NTRT, except the cable con-
tacts the rod in two places due to its rotation.
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control, with values P = 20,000, D = 5. These distributed con-
trollers allow for some degree of morphological communi-
cation (as defined in Ref.25), as the tension of one cable
affects other nearby cables.

The cables’ motions are coordinated by a model of a
central pattern generator, which provides an adaptive tra-
jectory for locomotion. Each cable receives input from a
single node of the CPG. The CPG equations used here are a
combination of the adaptive phase-coupled oscillator equa-
tions of Righetti et al.55 and Gay et al.45:

_rl¼ c(Riþ krFr � r2
i )ri (2)

_hl¼xiþ khFhþ+
j
rjWijsin(hj� hi�/ij) (3)

_xl¼ kxFxsin(hi) (4)

Vi¼ ricos(hi), (5)

where ri is the amplitude of the wave, hi is the phase, xi is the
frequency, and Vi is the input to the impedance controller. The
amplitude [Eq. (2)] is set by convergence parameter ci and set
point Ri. The phase relates to connected nodes through weight
wij, phase offset uij, and the other node’s amplitude rj in
Equation (3). The terms kr, kh, and kx are scalar gains on
feedback functions Fr, Fh, and Fx, similar to45 providing
sensory feedback on length and tension through an ANN (Fig.
5). An ANN was chosen since it can be efficiently tuned as
multi-input, multioutput function approximator. Equations are
integrated using ODEInt, part of the Boost C++ libraries.56

The parameters of the CPG nodes, such as frequency and
amplitude, were homogeneous throughout the structure. For
couplings that are specified by a weight (–1) and a phase offset
(–p), each node is coupled to nodes with shared rigid bodies.
Since the rigid bodies are in a chain, there are nodes associ-
ated with at most three rigid bodies in any coupling group,
and these groups can be repeated for the length of the robot
(m[3m - 1] couplings), where m is the number of nodes. In
addition, symmetric couplings are the same, reducing the num-
ber of possible couplings by approximately half to m(3m + 1)/2.
An example with a two-node, three-segment system with seven
possible couplings is shown in Figure 6. Since the couplings are

defined over a three-segment subsystem, they can be scaled to a
spine of any length, allowing parameters tuned on a shorter spine
to be used immediately with a longer spine.

Each node of the CPG receives feedback that can modify
its amplitude, phase, and frequency, based on the length and
tension of the node’s associated cable. This local feedback
maintains the distributed nature of the control, uses sensors
available to existing tensegrity hardware, and allows the
trajectory to synchronize with the morphology and the ter-
rain. The CPG will maintain its original amplitude, phase,
and frequency without feedback.45 Feedback is processed
through an ANN with two inputs, four hidden nodes, and
three outputs. Once tuned, the same parameters are reused for
every distributed controller.

Prior work showed that changing the tension offset of the
impedance controller can steer a tensegrity spine robot manu-
ally.48 A second ANN generalizes this steering mechanism to the
tetrahedral complex shape and updates the tensions automati-
cally. For goal direction, inputs include the compass heading to
the goal and the robot’s current orientation. The input is pro-
cessed through eight hidden nodes. The output is the tension
offset for each cable, with eight outputs for each segment; output
is duplicated for each segment of the robot. Commands to the
CPG could also be used for steering,43 but in practice, these
commands conflicted with the rough terrain adaptations.

Machine learning

Tuning a controller for goal direction on rough terrain is a
difficult problem, since the controller needs to learn basic
locomotion, how to adapt locomotion to terrain, and how to
steer toward a goal. While it may be possible to tune all of
these features in a single algorithm, we found it effective to
partition the problem into motion, terrain adaptation, and
goal direction. Our objective function tested the tensegrity
spine on three types of terrain: flat ground, sinusoidal hills
with an amplitude of 2 cm, and a field of 500 randomly placed
blocks. The blocks were 5 cm wide, 0.5 cm tall, and were
fixed to the ground within a 200 cm by 200 cm area around
the origin. The first trials were evaluated according to dis-
tance traveled ‘‘as the crow flies’’ in 60 simulation seconds. If
multiple terrains were used, scores were averaged.

The first step is to generate basic locomotion. Finding good
parameters for motion control is sometimes referred to as a
‘‘needle in a haystack’’ problem, as there are many more ways
to fail than succeed, leading to a solution space without a clear

FIG. 6. The coupling rules
used on the CPGs. This system
leads to m(3m + 1)/2 possi-
ble couplings, where m is the
number of nodes. In this case,
there is a maximum of 10 edges
per node, but these are sorted by
geometry into 7 possible edges.
This system scales at half the
rate of specifying each cou-
pling separately. From Mirletz
et al.49
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gradient. Monte Carlo search is effective for exploring this
type of space, since evaluations can be trivially parallelized.
The initial CPG parameters were selected from 24,000 Monte
Carlo trials. The eight best were then refined by a Gaussian
sampling hill climbing optimization on all three terrains,
where random samples are taken near the best results. All CPG
parameters were scaled within the learning library to be be-
tween 0 and 1, the Gaussian had a mean of zero and a standard
deviation of 0.005. The hill climbing step improved the results
between 100% and 200% over Monte Carlo, but most of the
improvement was on flat ground, indicating the need for
feedback to the CPG. This two-part first stage was used for
four different spine morphologies in prior work.49

The second stage parameterized the sensory feedback ANN
for irregular terrain. In this case, the search algorithms are
continuing to explore a near effective solution, so a genetic
algorithm converges to a solution with fewer trials than Monte
Carlo. The genetic algorithm had a population of 60, gener-
ating its members with crossover (40 per generation), mutation
(5 per generation, standard deviation also 0.005), and elitism
(15 per generation). The initial seed was random. Fitness was
determined by average score between the three terrain types.
The controller at this stage was discussed in Ref.50

To produce goal direction, the objective function needs to
change to distance moved toward the goal. The final stage
trained the initial goal-directed controller on a goal roughly to
the left on the hilly terrain, 350 cm away (location B in
Fig. 9). A genetic algorithm started tuning the goal-directed
network from random parameters (population of 80, 15
generations, mutate 25 with standard deviation 0.03, cross-
over 15, elitism 40) and finished with fine tuning of the entire
system (population 50, 45 generations, mutate 15 with stan-
dard deviation 0.01, crossover 10, elitism 25). Each trial took
120 simulation seconds to give the robot sufficient time to get
to the goal on hilly terrain. Generalization to multiple goals
(A, B, and C) took an additional 26 generations (same as full
system evolution) of training on both hilly and flat ground,
scores were averaged across these six trials. The final result
was a single set of parameters tuned to reach multiple goals
on multiple terrains.

Results

When properly tuned, the impedance controller functions
similarly to reflexes. Figure 7 shows an example of the tension-
based adaptations provided by the impedance controller. One

FIG. 7. Tetraspine (38 cm to
a rod) crawling over flat ground.
The top cable is shown respon-
ding to an impedance controller
where T0 = 35 N, K = 300 N/m,
and B = 50 N s/m. The tension
offset is high enough to prevent
the cable from going slack, and
the high amplitude of the ve-
locity causes a 6.5 cm oscilla-
tion in the length of the cable.
Color images available online
at www.liebertpub.com/soro

170 MIRLETZ ET AL.



0 10 20 30 40 50 60 70 80 90 100T
op

 C
ab

le
 L

en
gt

h 
(c

m
)

5

10

15

20

25
Cable Length Change while Crawling over Hills

Time (s)
0 10 20 30 40 50 60 70 80 90 100S

eg
m

en
t H

ei
gh

t (
cm

)

10

15

20

FIG. 8. Tetraspine (38 cm
to a rod) crawling over 5 cm
bumps. The impedance con-
troller adapts the length of
the cable (top) to the terrain
(visible in the height of the
segment, bottom), while still
tracking the signal provided by
the CPG and producing loco-
motion. Color images avail-
able online at www.liebertpub
.com/soro

FIG. 9. The final controller
on three terrain types without
goal direction input. The
three square blocks indicate
the possible goal positions
during training (the CPG,
feedback function, and im-
pedance controller were all
optimized for this task during
learning). The small lines
indicate the positions of the
center of mass of each seg-
ment of the robot. Color in-
dicates the time step, with
blue at 0 s fading to red by
the end of the trial at 120 s.
With no goal direction, the
robot finishes in three different
positions after 120 s. Color
images available online at
www.liebertpub.com/soro

A B C FIG. 10. Goal-directed mo-
tion on hilly terrain. The goal
position is indicated with the
large blue box, where A, B,
and C indicate the goal posi-
tions as in Fig. 9, and the center
of mass of each of the robot’s
segments is indicated with the
colored lines. The color fade
again occurs from 0 to 120 s.
Color images available online
at www.liebertpub.com/soro
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of the top outside cables adapts its length while an analogous
spine, Tetraspine, crawls directly forward across flat ground.
The sine wave input simulates the output of a CPG and is
sufficient for forward locomotion on flat ground and 5 cm hills
(Fig. 8). As the robot crawls over the hills, the rest lengths
around which the oscillations occur conform to the terrain.

More complex terrain types such as the block field required
adaptations to the trajectory.50 The final tuning of the CPG
feedback resulted in the feedback decreasing the CPG fre-
quency from 0.7 to 0.63 Hz and increasing the amplitude by
0.25 (cm/s). These changes align with the intuition that
successful locomotion on irregular terrain requires slower,
more precise motions. While feedback allows for motion
across the terrain, the terrain interactions still change the
direction of motion. Figure 9 shows the trajectory of the final
controller with only the feedback controller active, no goal
direction. The robot tends to move perpendicular to its length,
in a clockwise arc.

After training the goal direction network on three goal
positions, the robot is capable of directed motion on terrain.
Figure 10 shows these results by tracing the positions of the
robot’s segments over time. If the center of mass of one of the
robot’s segments passes within 20 cm of the goal block’s
center of mass, the robot will contact the goal block and
achieve the maximum score. The robot reaches the goal at the
location B on the hilly terrain (Supplementary Video S1;
Supplementary Data are available online at www.liebertpub
.com/soro), for location A, the robot comes within 20 cm, and
for the location C, it misses by 60 cm.

The geometry of the hills forces the robot to move dif-
ferently than it would on flat ground. In particular, with the
goal at location C, the robot spends a noticeable portion of the
trial moving along its length, rather than perpendicular to its
length. On hills, the goal-directed controller is about two
times faster than the undirected controller,50 covering
201.9 cm in the first 60 s. Tests on sloped terrains (global
ramps) showed that with this controller the simulated robot
was capable of climbing up to 7.5� slopes and can reach the
goal on small slopes of 2�.

The goal direction is more precise on flat ground.
Comparing Figure 9 with Figure 11, the shape changes
yielded by the goal direction network change the radius of
the arced path taken. To test the generality of the goal
direction network, the robot was tested on an additional
three goal locations on which it was not trained (locations
D through F). In the flat ground trials, the robot hit the goal
block in two trained locations (A, B) and two untrained
locations (D, E) (Supplementary Video S2). The goal block
is heavy enough that hitting the block stops the robot’s
continued motion, as in the trial with location B in Figure
11 (middle left) and location A (top left) in Figure 15. The
longer run time of location F’s trial (bottom right) shows
that with the proper inputs, the controller can also produce
counter clockwise turns. This controller displays its fastest
motion on flat ground, moving up to 501.34 cm in 60 s.
Images of this gait are shown in Figure 12. However, the
optimization did not consider efficiency, so the behaviors
designed for irregular terrain led to a high cost of transport
of 11.2.

The goal-directed adaptations generalized effectively to
the block field, the robot was able to escape in all 12 tests of
the goal-directed controller (six locations, two block fields).

Using the goal direction network enables the robot to es-
cape the block field 28 s faster than the controller with no
goal information. An escape is shown in Figure 13. Six
locations with a single block field are shown in Figure 14
(Supplementary Video S3), and with a different block field
in Figure 15. The robot contacts the goal block in six out
of 12 trials. Each goal block set produces a success in a
case where the controller missed on flat ground (C and F).
Thus, the controller reaches all six goal locations in at
least one trial.

Discussion

This work presents an adaptive, CPG-based controller for
tensegrity spines with many DOF and demonstrated the first
simulation of goal-directed motion of a CPG-controlled robot
over irregular terrain. For tensegrity robots, this demonstrates
the first controller that can cross multiple types of terrain in
simulation with a single set of parameters. The advantages of
this controller include the stable limit-cycle dynamics of the
CPG for reliable yet adaptable cable trajectories, low-level

D

E

F

A

B

C

FIG. 11. Goal-directed motion on flat ground. Flat ground
and the blocks were tested on three additional locations (D–F).
For the first five plots (A–E), blue is 0 s and red is 82 s. For
location F (lower right), red is 267 s. The robot contacts the goal
block in four out of six locations, two of which were untrained.
Color images available online at www.liebertpub.com/soro
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impedance control for handling fast perturbations, and con-
trol of whole-body behaviors through an ANN. The addition
of a compass to our hardware implementation would enable
implementation of this control scheme in hardware.52

The rhythmic motions produced by the CPG are analogous
to the open-loop vibrational control schemes of Khazanov
et al.26 and Bohm and Zimmermann,27 especially after feed-
back entrains the controller to the dynamics of the structure.
As tuned, the CPG produces higher amplitude, lower fre-
quency oscillations than these other controllers, which is ex-
pected for the more precise motions required to cross irregular
terrain. Moreover, it would be possible to create a CPG
through a spiking neural network, as in Rieffel et al.25 We
believe that the separation of behaviors (locomotion, adapt-
ability, and goal direction) to different components of the
controller clarifies the tuning procedure required to produce
goal-directed motion.

Our machine learning procedure is similar in complexity to
controllers tuned to have similar capabilities. For example,

Gay et al. hand tuned their CPG parameters and then tuned
feedback using particle swarm optimization.45 Their con-
troller did not demonstrate turning on terrain. The multi-
step machine learning procedure actually presents a few
advantages. First, the stages provide a fallback position: if
a subsequent stage is unsuccessful one does not have to
start over from the beginning. Second, the procedure en-
sures the robustness of the lower level components: the
CPG can produce motion on flat ground without feedback
or goal direction, a single step learning procedure risks
over-fitting. Ultimately, the direct encoding of parameters
as used here may not be the most efficient way to learn this
behavior. Adapting the learning methods used for contin-
uous time recurrent neural networks to CPGs, such as
Hyper-NEAT,57 may accelerate learning for this type of
controller.

With the current tuning, the coupling terms dominate the
CPG equations, with feedback providing adjustments to
synchronize with the structure and the terrain. Potentially, the

FIG. 12. Images from 28.7
to 30.3 s of the spine crawl-
ing on flat ground toward
location B (off the image to
the left). The gait anchors
with the rear segment, lifting
its right side, and scoots for-
ward and to the left. This
represents one cycle. Color
images available online at
www.liebertpub.com/soro

FIG. 13. Images from 25 to
30 s of the trial depicted in
the upper left corner of Fig-
ure 14. The robot success-
fully departs the blocks and
then crawls on flat ground to
the goal (the large block in
the upper right corner of
each image). Color images
available online at www
.liebertpub.com/soro
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CPG could be retuned such that feedback plays a larger role
for behaviors such as gait changes, which could be prompted
by the tension set points of the goal direction controller.
Additional sensors such as contact sensors should also im-
prove performance.

Previously, we primarily conducted machine learning
on 12-segment spines.49 Longer spines displayed more
complex behaviors and smoother gaits. This entire al-
gorithm can control spines of that length and longer.
When tested on a 30-segment spine (analogous to the
number of articulating vertebrae in many vertebrates58),
the controller is capable of controlling 232 actuators in
one-half real time on a single core (Supplementary Video
S4). The specific functions learned by the goal direction
network are not tuned optimally for additional segments,
but still show effective locomotion. Additional optimi-
zation could further improve performance, and numerical
integration of the CPG could be paralleled for real time
or faster computation.

This control algorithm can generalize with its existing
symmetry rules to any tensegrity structure that is symmetric
along a single axis. New symmetry rules could be devised to
extend it to legged tensegrity robots or generally soft struc-
tures. The complexity of the controller would depend on the
connectivity of the structure. With nearest neighbor coupling
(based on cables that share rigid bodies), the work presented
here had 23 edges per CPG node, whereas a structure as used
in Ref.24 would only have 10, and the icosahedron would
have 14. Since these cases require fewer parameters, the
learning algorithms should require fewer trials to converge to
a solution. The complexity of the goal direction network
would depend on what symmetry rules were used throughout
the new shapes and the gaits produced by the CPG. However,
the general principle of changing the tension offset of the
impedance controller to adjust the shape of the robot and
direction of the controller will apply to any soft or tensegrity
robot. Thus, this work supports the continued development of
flexible robots with many DOF.

D

E

F

A

B

C

FIG. 14. Goal-directed motion on a block field. All six trials
used a block field with the same random seed. The robot con-
tacts the goal in three out of six trials. The trial length was 100 s
in all cases. (A–F) indicate goal positions as in Fig. 11. Color
images available online at www.liebertpub.com/soro
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FIG. 15. Goal-directed motion on a second block field. All
six trials use the same random seed, which was different
from Figure 14. The goal positions (A–F), remain the same.
The robot reaches the location A again, as well as locations
B and C (left side). Color images available online at
www.liebertpub.com/soro
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