
State Estimation for Tensegrity Robots

Ken Caluwaerts1,∗, Jonathan Bruce2,∗, Jeffrey M. Friesen3, and Vytas SunSpiral4

Abstract— Tensegrity robots are a class of compliant robots
that have many desirable traits when designing mass efficient
systems that must interact with uncertain environments. Var-
ious promising control approaches have been proposed for
tensegrity systems in simulation. Unfortunately, state estimation
methods for tensegrity robots have not yet been thoroughly
studied. In this paper, we present the design and evaluation
of a state estimator for tensegrity robots. This state estimator
will enable existing and future control algorithms to transfer
from simulation to hardware. Our approach is based on the
unscented Kalman filter (UKF) and combines inertial measure-
ments, ultra wideband time-of-flight ranging measurements,
and actuator state information. We evaluate the effectiveness
of our method on the SUPERball, a tensegrity based planetary
exploration robotic prototype. In particular, we conduct tests
for evaluating both the robot’s success in estimating global
position in relation to fixed ranging base stations during rolling
maneuvers as well as local behavior due to small-amplitude
deformations induced by cable actuation.

I. INTRODUCTION

Tensegrity robotics is a relatively young field of research
wherein a robot is structured according to tensegrity princi-
ples. We define a tensegrity as a structure with discontinuous
compression elements suspended within a web of tension
elements. In this class of robots, motion is often achieved
through actuation of the tensile elements within the structure.

Tensegrity robots have highly coupled dynamics due to
their interconnected network of compliant tensile elements.
As such, an external force exerted at a single point will
cause a global displacement in all nodal positions of the
system. This property is beneficial in that it allows the system
to passively adapt to external forces and redistribute loads
effectively through the tension network. However, it also
causes difficulties in determining the state of the system
when only limited sensor information is available.

Various control approaches have been proposed for tenseg-
rity systems in simulation. However, these algorithms often
rely on full state or trajectory information [1][2][3][4]. In this
paper, we present the design and evaluation of a state esti-
mator for this class of robot which will allow the transfer of
these existing and future control algorithms from simulation
to hardware.

*These authors contributed equally to this work.
This work was performed while all authors were at the

NASA Ames Research Center, Moffett Field CA, USA, with funding
from NASAs NSTRF, NIAC and GCD Programs

1Oak Ridge Associated Universities (ORAU), Oak Ridge TN, USA
ken.caluwaerts@nasa.gov

2University of California Santa Cruz, Santa Cruz CA, USA
jebruce@ucsc.edu

3University of California San Diego, San Diego CA, USA
jfriesen@ucsd.edu

4SGT Inc., Greenbelt MD, USA vytas.sunspiral@nasa.gov

Fig. 1: The SUPERball prototype, a six strut tensegrity robot
with 12 actuated cables and 12 passive cables. Our state
estimation algorithm is evaluated on this platform.

We focus on the use of low-cost ranging modules and
inertial measurement units mounted to the rods of a tenseg-
rity robot as the sensor inputs to an unscented Kalman
filter (UKF). These ranging sensors can be purchased off-
the-shelf and do not rely on any user-designed mechanical
infrastructure to operate. We also use motor encoders to
sense change in cable rest length as control inputs into
the dynamic model utilized by the UKF. For testing our
approach, we use the SUPERball prototype, a six strut
tensegrity robot designed to explore tensegrity systems for
planetary exploration [5][6]. SUPERball is shown in Fig. 1.

This paper is organized as follows. We first present a
detailed overview of the system’s sensors, ranging method
and calibration routine. We then describe the implementation
of the unscented Kalman filter and the dynamics model. This
is followed by our experimental results. We end this paper
with our conclusions and future outlook.

II. SUPERBALL OVERVIEW

The Spherical Underactuated Planetary Exploration Robot
(SUPERball) is a preliminary tensegrity robot prototype
developed at the NASA Ames Research Center. The purpose
the SUPERball project is to develop technologies for a new
class of planetary exploration robot which is able to deploy
from a compact launch volume, land at high speeds without
the use of air-bags, and provide robust surface mobility.
This broad set of functions can be enabled by utilizing the
efficiency and structural compliance of tensegrity robots.
Passive-structure drop tests have confirmed the analysis
supporting the high-speed landing concept, and the current

prototype of SUPERball is intended to develop the foun-
dational engineering approaches required to support surface
locomotion by tensegrity robots. A full system overview is
out of the scope of this paper, but the relevant details of the
system will be discussed. Please refer to Bruce et. al. [5] and
Sabelhaus and Bruce [6] for system details.

Relevant to this work are the sensors, actuators, and
the ROS network implemented on SUPERball. SUPERball
consists of 6 identical rods held together by 24 cables in-line
with springs. As described in [5], each rod of SUPERball is
comprised of two modular tensegrity robotic platforms (end
caps). Each platform is equipped with inertial measurement
units, a motor with encoders, and a fully enabled Robot
Operating System (ROS) node which communicates to our
ROS network via WiFi. SUPERball is underactuated and
only 12 out of the 24 cables can be actuated (shortened)
by spooling cable around a spindle (one per end cap). This
allows the robot to roll through deformation. Since each mod-
ular tensegrity platform can be outfitted with sensors, ranging
sensors were added for this paper to enable positioning. The
ranging sensors are discussed in detail in Section III.

III. RANGING SETUP AND CALIBRATION

This section introduces the hardware and software setup
for a set of wireless ranging modules to enable position track-
ing of the robot both as an as internal distance measurements
(end cap to end cap) an in an external (world) reference
frame.

We equipped all end caps of SUPERball with a DWM1000
ranging module from DecaWave Ltd. By employing ultra
wideband technology, the low-cost DWM1000 modules pro-
vide wireless data transfer and highly accurate timestamps
of transmitted and received packets. This allows the distance
between two DWM1000 modules to be estimated by com-
puting the time-of-flight of exchanged messages without the
need for synchronized clocks. We opted for this technology
because it allows proprioceptive state estimation (distances
between end caps), which cannot be easily tracked directly
via motor encoders. [7] Furthermore, we placed eight more
DWM1000 modules as ”fixed anchors” around our testing
area to provide a world reference frame for ground truth
and generation of a reward signal for the machine learning
algorithms that we will use to develop locomotion controllers
for the robot. Our intention is that the fixed anchors will not
be required in the final deployed version of the robot, and
are primarily for use during algorithm development.

We first introduce the basic sensor operation and our
approach to efficiently estimate distances between a large
number of sensor modules. This is followed by a discussion
of our ranging software and hardware setup. Finally, we
provide a calibration routine similar to a common motion
capture system that allows for quick set up of the sensor
network.

A. Sensor Operation

1) Bidirectional Ranging: We operate the DWM1000 in
the so-called symmetric double-sided two-way ranging mode.

In this mode, the modules exchange 3 packets to estimate the
time-of-flight between each other. While the time-of-flight of
unsynchronized modules can be estimated with the exchange
of only 2 packets, the employed mode can significantly
reduce measurement noise [8].

The basic ranging packet exchange is shown in Fig. 2. One
module sends out a poll message containing an emission
timestamp (tSP) using its local clock. A second module
receives this message and timestamps the time of arrival
using its local clock (tRP). The second module then sends
out a response packet at time tSR (module 2’s clock). The
first module receives this packet at time tRR (module 1’s
clock). Module 1 now sends out a final message containing
tRR and the emission time of the final message (tSF ,
clock of module 1). Module 2 receives this information and
timestamps it (tRF).

poll (tSP)

final (tRR, tSF)

response

tSP

tSR

tSF

tRP

tRR

tRF

TOF

TOF'

TOF''

a
b

c
d

module 1 module 2

Fig. 2: Basic symmetric double-side two-way ranging packet
exchange. Modules 1 and 2 exchange 3 packets (poll, re-
sponse, and final). Module 2 then estimates the distance
between the modules based on the local timestamps.

Module 2 can now estimate the time-of-flight and the
distance between itself and module 1 based on the 6 times-
tampes. The basic equations to estimate the distance between
module i and module j (module i initiates the ranging and
module j computes the distance) are given by:

ai = tiSF − tiSP (1)
bj,i = tj,iRF − t

j,i
RP (2)

cj,i = tj,iRF − t
j
SR (3)

di,j = tiSF − t
i,j
RR (4)

TOF j,i ≈
1

2

(
cj,i − di,j

bj,i
ai

)
− δj,i (5)

‖Nj −Ni‖ ≈
1

2c

(
cj,i − di,j

bj,i
ai

)
− oj,i (6)

.
= mj,i − oj,i. (7)

The variables a, b, c, and d are also visualized in Fig. 2.
The time-of-flight calculation between two modules i and j
(TOFj,i = TOFi,j) is hindered by a fixed measurement
offset (δj,i = δi,j). This offset is due to antenna delays
and other discrepancies between the timestamps and actual
packet reception or emission. Whereas this offset is expected
to be unique to each module, we found that it is necessary to
estimate this offset pairwise for closely located modules. Our
hypothesis is that the proximity of the robot’s motors and the
sensor’s position near the end cap’s metal structure influence
the antenna characteristics between pairs of modules.

Eq. 6 estimates the distances between the modules based
on the time-of-flight calculation (c is the speed of light).
We rewrite the time offset δj,i as a distance offset oj,i (with
oj,i = oi,j). Here Ni and Nj refer to the positions of nodes
i and j respectively (see Section IV). The variables mj,i

represent the uncorrected distance estimates.
The DWM1000 requires careful configuration for optimal

performance. We provide our main configuration settings in
Table I. The ranging modules tend to measure non line-
of-sight paths near reflective surfaces (e.g. floor, computer
monitors), which may cause filter instability. Using the
DWM1000’s built-in signal power estimator, we reject such
suspicious packets. In practice, between 30% and 70% of
packets are rejected in our indoor test environment.

TABLE I: DWM1000 configuration

bitrate channel preamble PRF preamble code
6.8Mbit s−1 7 256 64MHz 17

2) Broadcast Ranging: Due to the large number of ex-
changed packets (3 per pair) bidirectional ranging between
pairs of modules quickly becomes inefficient when the num-
ber of modules grows. We propose a simple approach using
timed broadcast messages that scales linearly in the number
of modules (3 packets per module). In this setup one module
periodically initiates a measurement sequence by sending out
a poll message. When another module receives this message
it emits its own poll message after a fixed delay based on its
ID, followed by response and final messages after additional
delays. Broadcast ranging is illustrated in Fig. 3.

time

p
o
ll

1
-2

re
sp

o
n
se

 2
-1

fi
n
a
l
1

-2
p

o
ll

2
-3

re
sp

o
n
se

 3
-2

fi
n
a
l
2

-3
p

o
ll

3
-4

re
sp

o
n
se

 4
-3

fi
n
a
l
3

-4
p

o
ll

4
-2

re
sp

o
n
se

 2
-4

fi
n
a
l
4

-2
p

o
ll

1
-3

re
sp

o
n
se

 3
-1

fi
n
a
l
1

-3
p

o
ll

1
-4

re
sp

o
n
se

 4
-1

fi
n
a
l
1

-4

p
o
ll

1
p

o
ll

2
p

o
ll

3
p

o
ll

4
re

sp
o
n
se

 1

re
sp

o
n
se

 2

re
sp

o
n
se

 3
re

sp
o
n
se

 4

fi
n
a
l
1

fi
n
a
l
2

fi
n
a
l
3

fi
n
a
l
4

p
a
ir

w
is

e
b
ro

a
d
ca

st

Δt

event

Fig. 3: Packet exchange between 4 modules for bidirectional
pairwise and broadcast ranging. Timed broadcast messages
allow for efficient ranging with a large number of modules.

One disadvantage of the broadcasting approach is that
the total measurement time between a pair of modules
takes longer (up to 60ms in our experimental setup) than
a single pairwise bidirectional measurement (approx. 3ms).
However, broadcast ranging provides two measurements for
each pair of modules per measurement iteration.

Note that each module now needs to keep track of the poll
and final packet reception times of all other modules. The
final packet becomes longer as each module needs to transmit
the response reception time (tRR) of all other modules.

B. Ranging Setup

Each end cap of SUPERball was fitted with a DWM1000
module located approximately 0.1m from the end of the
strut. To simplify the notation, we do not distinguish between
end cap positions (ends of the struts) and the positions
ranging sensor locations. In practice, we take this offset into
account in the output function of our filter (see Section IV).

The broadcasting algorithm runs at 15Hz and packet
transmissions are spaced 1ms apart. This allows for over 20
modules to range. After one ranging iteration, each end cap
transmits its measurements over WiFi to the ROS network.
A ROS node then combines measurements from all end caps
into a single ROS message at 10Hz.

The fixed anchors operate in a similar way to the end
caps, but are not connected to a ROS node and can not
directly transmit data to the ROS network. This means that
we obtain two measurements (one in each direction) for each
pair of modules on the robot, but only a single measurement
between the fixed anchors and the modules on the robot.

C. Calibration

One of the design goals of our state estimation method
is quick deployment in new environments without signifi-
cant manual calibration. To achieve this, we implemented
an automatic calibration procedure to jointly estimate the
constellation of fixed modules (anchors, defining an external
reference frame) and the pairwise sensor offsets (oi,j). Cal-
ibration is performed - similar to common motion capture
systems - by moving the robot around, while recording the
uncorrected distance measurements (mj,i).

After recording a dataset, we minimize the reconstruction
error L by optimizing over the offsets o (oi,j rearranged
as a vector), the estimated anchor locations N est, and the
estimated moving module locations Nfloat[1 . . . nsamples]
(i.e. the module on the robot’s end caps):

L (i, j, t) =
(
‖Nanchor

i −Nfloat
j [t] ‖ − oj,i −mi,j [t]

)2
(8)

L
(
o,Nanchor,Nfloat[1 . . . nsamples]

)
=
∑
i,j,t αj,tL (i, j, t). (9)

The brackets in Nfloat[1 . . . nsamples] indicate the mov-
ing module locations (end cap positions) at a specific
timestep. For example Nfloat[5] contains the estimated end
cap positions at timestep 5 in the recorded dataset. In Eq. 9,
i iterates over anchors, j iterates over moving nodes and t
iterates over samples. The indicator variables αj,t are equal
to 1 when for sample t there are at least 4 valid measurements
to the fixed module for moving module j (i.e. the number
of DOFs reduces).

In practice we also add constraints on the bar lengths,
which take the same form as Eq. 8 with the offsets set
to 0. We used BFGS to minimize Eq. 9 with a dataset
containing approximately 400 timesteps selected randomly
from a few minutes of movement of the robot. Although the
algorithm works without prior knowledge, we noticed that
providing the relative positions of 3 fixed nodes (3 manual
measurements) significantly improves the success rate as
there are no guarantees on global convergence.

Once the external offsets (between the anchors and moving
nodes) and the module positions are known, we can estimate
the offsets between moving nodes in a straightforward way
by computing the difference between the estimated internal
distances and the uncorrected distance measurements.

IV. FILTER DESIGN

Tensegrity systems are nonlinear and exhibit hybrid dy-
namics due to cable slack conditions and interactions with the
environment that involve collision and friction. This warrants
a robust filter design to track the robot’s behavior.

The commonly used Extended Kalman Filter (EKF) does
not perform well on highly nonlinear systems where first-
order approximations offer poor representations of the prop-
agation of uncertainties. Additionally the EKF requires com-
putation of time-derivatives through system dynamics and
output functions which is challenging for a model with
complex hybrid dynamics.

The sigma point UKF does not require derivatives through
the system dynamics and is third order accurate when
propagating Gaussian Random Variables through nonlinear
dynamics [9]. The computational cost of the UKF is com-
parable to that of the EKF, but for tensegrity systems which
commonly have a large range of stiffnesses and a high
number of state variables the time-update of the sigma points
dominates computational cost. As such we first describe
the methods used to reduce computational cost of dynamic
simulation, then in the following section we outline the
specific implementation of the UKF for the SUPERball
prototype.

A. Dynamic Modelling

The UKF requires a dynamic model which balances model
fidelity and computational efficiency since it requires a large
number of simulations to be run in parallel. We model a
tensegrity system as a spring-mass net and used the following
incomplete list of simplifying assumptions:
• Only point masses located at each node point
• All internal and external forces are applied at nodes
• Members exert only linear stiffness and damping
• Unilateral forcing in cables
• Flat ground at a known height with Coulomb friction
• No bar or string collision modelling
For a tensegrity with n nodes and m members, the member

force densities, q ∈ Rm, can be transformed into nodal
forces, Fm ∈ Rn×3, by using the current Cartesian nodal
positions, N ∈ Rn×3, and the connectivity matrix, C ∈
Rm×n, as described in [10]. This operation is described by
the equation:

Fm = CT diag(q)CN ,

where diag(·) represents the creation of a diagonal matrix
with the vector argument along its main diagonal. We first
note that CN produces a matrix U ∈ Rm×3 where each row
corresponds to a vector that points between the ith and jth
nodes spanned by each member. Therefore, this first matrix
multiplication can be replaced with vector indexing as Uk =

Ni −Nj , where we use the notation Uk to denote the kth
row of matrix U . If we then compute V = C dN

dt with the
same method as U , we obtain a matrix of relative member
velocities. The matrices U and V are used to calculate
member lengths as Lk = |Uk|2 and member velocities as
d
dt (Lk) =

Uk(Vk)
T

Lk
.

We can then use these values to calculate member force
densities, q, using Hooke’s law and viscous damping as:

qk = Kk(1−
L0k

Lk
)− ck

Lk

d

dt
(Lk).

Here Kk and ck denote the kth member’s stiffness and
damping constants, respectively. Note that cables require
some additional case handling to ensure unilateral forcing.

Scaling each Uk by qk yields a matrix whose rows
correspond to vector forces of the members. We denote this
matrix as U q ∈ Rm×3, and we note that U q = diag(q)CN .
Thus this matrix of member forces can be easily applied to
the nodes using:

Fm = CTU q.

We now have a method for computing nodal forces exerted
by the members and need only compute ground interaction
forces, which we will denote as Fg . We computed ground
interaction forces using the numerical approach in [11]. The
nodal accelerations can then be written as:

d2N

dt2
= M−1(Fm + Fg)−G,

where M ∈ Rn×n is a diagonal matrix whose diagonal
entries are the masses of each node and G ∈ Rn×3 is matrix
with identical rows equal to the vector acceleration due to
gravity. It is then straightforward to simulate this second
order ODE using traditional numerical methods.

Note also that it is possible to propagate many parallel
simulations efficiently by concatenating multiple N matrices
column wise to produce N‖ ∈ Rn×3l for l parallel simula-
tions. The resultant vectorization of many of the operations
yields significant gains in computational speed with some
careful handling of matrix dimensions.

B. UKF Implementation

We implement a traditional UKF as outlined in [9] with
additive Gaussian noise for state variables and measurements.

Several parameters are defined for tuning the behavior
of the UKF, namely α, β and κ, where α determines
the spread of the sigma points generated by the unscented
transformation, β is used to incorporate prior knowledge of
distribution, and κ is a secondary scaling parameter. We hand
tuned these parameters to the values α = 0.0139, β = 2 for
Gaussian distributions and κ = 0 and found this to yield an
adequately stable filter.

We define our state variables as N and dN
dt stacked in

a vector y ∈ RL where L = 6n is the number of state
variables. We assume independent state noise with variance
λy = 0.4 thus with covariance R = λyIL.

For measurements we take estimated orientation data from
our IMUs using a gradient descent AHRS algorithm based

on [12], θ ∈ Rb where b is the number of bar angles available
at the given time step and all ranging measures, r ∈ Ra,
where a is the number of ranging measures available at a
given time step. We again assume independent noise with
λθ = 0.1 and λr = 0.029 the measurement covariance matrix
is then defined as:

Q =

[
λθIb 0
0 λrIa

]
.

These user defined variables are then used within the frame-
work of our UKF to forward propagate both the current
expected value of the state as well as its covariance. Fig. 4
shows an overview of our complete state estimation setup.

SUPERball	

…
	

Control	

UKF	
Rest	 Lengths	

Ranging	 Data	

ROS	 	

IM
U
	 Data	

Control	
Strategy	

State	 	

Anchor	 n	

…
	

U
W
B	
Ra

ng
in
g	
Se
ns
or
s	

Anchor	 1	

Anchor	 2	

Fig. 4: Block diagram of data flow within the system.
Red signals are passed as ROS messages and blue signals
are passed using the ranging modules. Note that each rod
contains two ranging sensors located at each end of the rod.
The gray control strategy block represents a to-be-designed
state-feedback control strategy.

V. FILTER EVALUATION

A. Experimental Setup

Fig. 5: Visualization of the UKF output. SUPERball sits in
the middle of the plot surrounded by 8 ranging base stations.
Lines between the robot and the base stations indicate valid
ranging measures during this timestep.

To evaluate the performance of the UKF, we used the eight
”fixed anchor” ranging base stations calibrated as detailed
in Section III-C. Each end cap of SUPERball was then
able to get a distance measurement to each base station.

This information was sent over ROS along with IMU data
(yaw,pitch,roll) and cable rest lengths to the UKF. The
base stations were placed in a pattern to cover an area of
approximately 91m2. Each base station’s relative location to
each other may be seen in Fig. 5. SUPERball and the base
stations were then used to show the UKF tracking a local
trajectory of end caps and a global trajectory of the robotic
system. In each of these experiments, the UKF was allowed
time to settle from initial conditions upon starting the filter.
This ensured that any erroneous states due to poor initial
conditioning did not affect the filter’s overall performance.

B. Local Trajectory Tracking

In order to track a local trajectory, SUPERball remained
stationary while two of its actuators tracked phase shifted
stepwise sinusoidal patterns. During the period of actuation,
two end cap trajectories were tracked on SUPERball and
compared to the trajectory outputs of the UKF. One end
cap was directly connected to an actuated cable (end cap
2), while the other end cap had no actuated cables affixed
to it (end cap 1). To obtain a ground truth for the position
trajectory, a camera that measured the position of each end
cap was positioned next to the robot. Both end caps started
at the same relative height and the majority of movement
of both fell within the plane parallel to the camera. Fig. 6
shows the measured and UKF global positions of the two
end caps through time.

0 10 20 30 40 50 60
t (s)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

P
o

si
ti

o
n

 (
m

)

End Cap 1

0 10 20 30 40 50 60
t (s)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

P
o

si
ti

o
n

 (
m

)

End Cap 2

UKF X
Measured X
UKF Y
Measured Y

Fig. 6: Position plotted through time for both end cap 1
and end cap 2. The thin line represents the position output
measured by the camera tracking system, and the bold
line represents the position output from the UKF filter. As
expected, there is a time domain lag between the measured
and estimated positions.

C. Global Trajectory Tracking

For global trajectory tracking, SUPERball was actuated to
induce a transition from one base triangle rolling through to
another base triangle as presented in [6]. Ground truth for
this experiment was ascertained by marking and measuring
the positions of each base triangle’s end caps before and after
a face transition. We evaluate 4 settings of the state estimator.
Full: The state estimator as described in Section IV with all
IMU and ranging sensors. no IMU: Only the ranging sensors
are enabled. full w. cst. offset: Same as full, but the offsets
o are set to a constant instead of optimized individually.
4 base station ranging sensors: 50% of the base station

ranging sensors are disabled. The results of this experiment
are presented in Fig. 7 and 8.

1 2 3

Fig. 7: Top down view of the triangular faces to which
the robot transitions during the global trajectory tracking
experiment for various setting of the state estimator. The
small inset illustrates the movement of the robot. The line
shows the estimated center of mass (CoM) using the full
settings. Finding the initial position (origin) is hard for all
settings, and without the IMUs the estimator does not find
the correct initial face. After a first roll, tracking becomes
more accurate. The offsets o have a minimal impact, which
indicates that our calibration routine is sufficiently accurate.

Fig. 8: X and Y position of end cap 12 as a function of time
for the various estimator settings. The end cap was initially
off the ground and touches the ground after the first roll.
This is not tracked correctly when the IMUs are disabled.
The system works as expected when 4 base stations ranging
sensors are disabled, but with slower convergence and more
noise on the robot’s position. Around 60 s there’s a spurious
IMU value from which the state estimator recovers.

VI. CONCLUSION

We have introduced a state estimation approach for tenseg-
rity robots based on ultra wideband ranging sensors, inertial
measurements, and actuator states. An unscented Kalman fil-
ter was used to combine these sensor and state observations.
While this is a fairly common approach to state estimation,
our algorithm is robust to measurement noise and significant
amounts of missing data. To verify these statements, we
evaluated our method on two tasks: rolling and stationary
deformations of SUPERball.

Most of the current control approaches for tensegrity
robots rely on position tracking for either motion planning or
performance evaluation. Hence, our main contribution to the
field of tensegrity robotics is that this work will finally allow
various proposed control algorithms for tensegrity robots to
be transferred from the simulation domain to hardware.

We believe that - in this context - our setup is a viable
alternative to more established external solutions, such as
motion capture systems. In particular, our approach is low-
cost, self-calibrating and only relies on autonomous anchors.
These last two qualities are particularly attractive for future
space missions. We do not yet achieve the accuracy provided
by commercial motion capture systems. However, this is not
a priority at this point as we mainly are focused on large
displacements by rolling of SUPERball.

The logical next step is to test our state estimator when
SUPERball is moving around in a larger space. The Rover-
Scape at NASA Ames - a football field sized outdoor rover
testbed - is the ideal candidate test area for this.

A related future goal is to add support for an incremental
number of ranging anchors. This will allow SUPERball to
explore uncharted terrain by dropping beacons when the
uncertainty of its current position increases.

ACKNOWLEDGMENTS

We appreciate the support, ideas, and feedback from members
of the Dynamic Tensegrity Robotics Lab. We are also grateful to
Terry Fong and the NASA Ames Intelligent Robotics Group.

REFERENCES

[1] J. Rieffel, R. Stuk, F. Valero Cuevas, and H. Lipson, “Locomotion of
a tensegrity robot via dynamically coupled modules,” Proceedings of
the International Conference on Morphological Computation, 2007.

[2] C. Paul, J. W. Roberts, H. Lipson, and F. J. Valero Cuevas, “Gait
production in a tensegrity based robot,” International Conference on
Advanced Robotics, pp. 216–222, 2005.

[3] A. Graells Rovira and J. M. Mirats-Tur, “Control and simulation of
a tensegrity-based mobile robot,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 526–535, May 2009.

[4] C. Sultan, M. Corless, and R. Skelton, “Tensegrity flight simulator,”
Journal of Guidance, Control, and Dynamics, vol. 23, no. 6, pp. 1055–
1064, 2000.

[5] J. Bruce, K. Caluwaerts, A. Iscen, A. P. Sabelhaus, and V. SunSpiral,
“Design and evolution of a modular tensegrity robot platform,” in
ICRA, May 2014, pp. 3483–3489.

[6] A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi,
S. Dobi, A. M. Agogino, and V. SunSpiral, “System design and
locomotion of SUPERball, an untethered tensegrity robot,” in ICRA,
2015, pp. 2867–2873.

[7] A. Ledergerber, M. Hamer, and R. D’Andrea, “A robot self-
localization system using one-way ultra-wideband communication,”
in IROS, 2015.

[8] DecaWave, “APS011 application note: Sources of error in DW1000
based two-way ranging (TWR) schemes.”

[9] E. Wan, R. Van Der Merwe, et al., “The unscented Kalman filter
for nonlinear estimation,” in Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000. IEEE, 2000, pp. 153–158.

[10] R. E. Skelton and M. C. Oliveira, Tensegrity systems. Springer, 2009.
[11] K. Yamane and Y. Nakamura, “Stable penalty-based model of fric-

tional contacts,” in ICRA, 2006, pp. 1904–1909.
[12] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of

imu and marg orientation using a gradient descent algorithm,” in IEEE
International Conference on Rehabilitation Robotics (ICORR2011),
2011, pp. 1–7.

	Introduction
	SUPERball Overview
	Ranging Setup and Calibration
	Sensor Operation
	Bidirectional Ranging
	Broadcast Ranging

	Ranging Setup
	Calibration

	Filter Design
	Dynamic Modelling
	UKF Implementation

	Filter Evaluation
	Experimental Setup
	Local Trajectory Tracking
	Global Trajectory Tracking

	Conclusion
	References

